L(s) = 1 | + (−0.702 + 1.21i)2-s + (4.90 + 8.48i)3-s + (3.01 + 5.21i)4-s + (−2.29 + 3.98i)5-s − 13.7·6-s + (4.61 − 17.9i)7-s − 19.7·8-s + (−34.5 + 59.8i)9-s + (−3.23 − 5.59i)10-s + (17.8 + 30.9i)11-s + (−29.5 + 51.1i)12-s + 36.1·13-s + (18.5 + 18.2i)14-s − 45.0·15-s + (−10.2 + 17.7i)16-s + (−35.4 − 61.3i)17-s + ⋯ |
L(s) = 1 | + (−0.248 + 0.430i)2-s + (0.943 + 1.63i)3-s + (0.376 + 0.652i)4-s + (−0.205 + 0.356i)5-s − 0.937·6-s + (0.249 − 0.968i)7-s − 0.871·8-s + (−1.27 + 2.21i)9-s + (−0.102 − 0.176i)10-s + (0.489 + 0.848i)11-s + (−0.710 + 1.22i)12-s + 0.770·13-s + (0.355 + 0.347i)14-s − 0.775·15-s + (−0.159 + 0.276i)16-s + (−0.505 − 0.875i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.982 - 0.187i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.982 - 0.187i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.194603 + 2.06011i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.194603 + 2.06011i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-4.61 + 17.9i)T \) |
| 23 | \( 1 + (-11.5 + 19.9i)T \) |
good | 2 | \( 1 + (0.702 - 1.21i)T + (-4 - 6.92i)T^{2} \) |
| 3 | \( 1 + (-4.90 - 8.48i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 + (2.29 - 3.98i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-17.8 - 30.9i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 - 36.1T + 2.19e3T^{2} \) |
| 17 | \( 1 + (35.4 + 61.3i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-62.2 + 107. i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 29 | \( 1 + 55.6T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-111. - 192. i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-216. + 374. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 314.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 443.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (216. - 375. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-85.9 - 148. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (84.2 + 145. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (10.2 - 17.8i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-276. - 478. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 - 553.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-27.4 - 47.4i)T + (-1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-295. + 512. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 422.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (344. - 596. i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 628.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.16760474290222861848100412515, −11.37928475295827853659939126257, −10.88629152483590681253119177607, −9.566493198459538422698903263583, −8.932408067978942523225643568206, −7.76137725217529581288572343965, −6.90955215893846438949392271414, −4.82344755124741399471279305004, −3.82093042781026192612130861960, −2.81039609482325114061859149666,
1.00894761224540728581510512007, 1.98690767074208025162573839409, 3.28705376541963404581237381023, 5.90672904788851580003522647966, 6.46164085834354941138518205026, 8.151745441916994720935557898967, 8.550187858974698726455642093149, 9.656590752873331529716550571231, 11.39424892554016267980723701666, 11.89570988110199357732407462863