L(s) = 1 | − 2-s − 5.83i·3-s − 7·4-s − 7.58·5-s + 5.83i·6-s + (−14.7 + 11.1i)7-s + 15·8-s − 7·9-s + 7.58·10-s + 25.0i·11-s + 40.8i·12-s − 29.5i·13-s + (14.7 − 11.1i)14-s + 44.2i·15-s + 41·16-s + 7.58·17-s + ⋯ |
L(s) = 1 | − 0.353·2-s − 1.12i·3-s − 0.875·4-s − 0.678·5-s + 0.396i·6-s + (−0.797 + 0.603i)7-s + 0.662·8-s − 0.259·9-s + 0.239·10-s + 0.687i·11-s + 0.981i·12-s − 0.631i·13-s + (0.282 − 0.213i)14-s + 0.760i·15-s + 0.640·16-s + 0.108·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 - 0.581i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.813 - 0.581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.624295 + 0.200115i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.624295 + 0.200115i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (14.7 - 11.1i)T \) |
| 23 | \( 1 + (110. + 2.96i)T \) |
good | 2 | \( 1 + T + 8T^{2} \) |
| 3 | \( 1 + 5.83iT - 27T^{2} \) |
| 5 | \( 1 + 7.58T + 125T^{2} \) |
| 11 | \( 1 - 25.0iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 29.5iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 7.58T + 4.91e3T^{2} \) |
| 19 | \( 1 - 146.T + 6.85e3T^{2} \) |
| 29 | \( 1 - 228.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 282. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 364. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 73.4iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 370. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 446. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 490. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 2.36iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 421.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 478. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 620.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 134. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.29e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 821.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 97.4T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.39e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.29421412697772777699819528799, −12.09947087182108253334666544909, −10.23611885949550243570126622390, −9.428873188772454293818376872481, −8.138037118070830885869391516545, −7.53974445672537423439423433485, −6.26737257219208374396409232551, −4.80322304640327027858157602378, −3.15816782516290855060022183964, −1.13265437742751612884298248742,
0.44546337465277901974141247278, 3.61671226931219655261970650566, 4.15535146785484474550135286974, 5.52812449735782225623433617016, 7.26493523585598922242397494303, 8.376424461057061449234704674619, 9.586791341293064407486423543556, 9.919898706662737770192269882787, 11.07661578186510351160823114248, 12.19418995596497977415181841295