L(s) = 1 | − 2-s − 5.83i·3-s − 7·4-s + 20.8·5-s + 5.83i·6-s + (5.36 + 17.7i)7-s + 15·8-s − 7·9-s − 20.8·10-s + 15.7i·11-s + 40.8i·12-s + 35.4i·13-s + (−5.36 − 17.7i)14-s − 121. i·15-s + 41·16-s − 20.8·17-s + ⋯ |
L(s) = 1 | − 0.353·2-s − 1.12i·3-s − 0.875·4-s + 1.86·5-s + 0.396i·6-s + (0.289 + 0.957i)7-s + 0.662·8-s − 0.259·9-s − 0.660·10-s + 0.432i·11-s + 0.981i·12-s + 0.755i·13-s + (−0.102 − 0.338i)14-s − 2.09i·15-s + 0.640·16-s − 0.298·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.873 + 0.486i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.873 + 0.486i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.65857 - 0.430697i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.65857 - 0.430697i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-5.36 - 17.7i)T \) |
| 23 | \( 1 + (-79.2 + 76.7i)T \) |
good | 2 | \( 1 + T + 8T^{2} \) |
| 3 | \( 1 + 5.83iT - 27T^{2} \) |
| 5 | \( 1 - 20.8T + 125T^{2} \) |
| 11 | \( 1 - 15.7iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 35.4iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 20.8T + 4.91e3T^{2} \) |
| 19 | \( 1 - 92.0T + 6.85e3T^{2} \) |
| 29 | \( 1 + 150.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 172. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 69.9iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 446. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 83.5iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 8.86iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 588. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 522. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 170.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 895. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 241.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 775. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 514. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 209.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 1.21e3T + 7.04e5T^{2} \) |
| 97 | \( 1 - 379.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.82972501282138968807987895544, −11.42768832191118132613553085912, −9.824530164633599881356215988839, −9.393081893693598014584634428775, −8.343805680600888180749793008075, −6.98594694810758435482417593243, −5.90890995163932576056381644219, −4.90339043194285923310948533942, −2.31129844734837194104036036767, −1.34626299722782264405546678090,
1.22859235447362868784969298316, 3.46604410461892280218494657829, 4.91581648387531670988809106457, 5.58328038467292141206876284839, 7.33281302335800948450439691991, 8.922454382161801606584256523394, 9.508669008662720267855643476496, 10.34472991299943164011797728428, 10.77939073578831261885257970982, 12.86984012632021038713965686881