Properties

Label 2-161-161.160-c3-0-18
Degree $2$
Conductor $161$
Sign $0.813 + 0.581i$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 5.83i·3-s − 7·4-s − 7.58·5-s − 5.83i·6-s + (−14.7 − 11.1i)7-s + 15·8-s − 7·9-s + 7.58·10-s − 25.0i·11-s − 40.8i·12-s + 29.5i·13-s + (14.7 + 11.1i)14-s − 44.2i·15-s + 41·16-s + 7.58·17-s + ⋯
L(s)  = 1  − 0.353·2-s + 1.12i·3-s − 0.875·4-s − 0.678·5-s − 0.396i·6-s + (−0.797 − 0.603i)7-s + 0.662·8-s − 0.259·9-s + 0.239·10-s − 0.687i·11-s − 0.981i·12-s + 0.631i·13-s + (0.282 + 0.213i)14-s − 0.760i·15-s + 0.640·16-s + 0.108·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 + 0.581i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.813 + 0.581i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $0.813 + 0.581i$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{161} (160, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ 0.813 + 0.581i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.624295 - 0.200115i\)
\(L(\frac12)\) \(\approx\) \(0.624295 - 0.200115i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (14.7 + 11.1i)T \)
23 \( 1 + (110. - 2.96i)T \)
good2 \( 1 + T + 8T^{2} \)
3 \( 1 - 5.83iT - 27T^{2} \)
5 \( 1 + 7.58T + 125T^{2} \)
11 \( 1 + 25.0iT - 1.33e3T^{2} \)
13 \( 1 - 29.5iT - 2.19e3T^{2} \)
17 \( 1 - 7.58T + 4.91e3T^{2} \)
19 \( 1 - 146.T + 6.85e3T^{2} \)
29 \( 1 - 228.T + 2.43e4T^{2} \)
31 \( 1 + 282. iT - 2.97e4T^{2} \)
37 \( 1 + 364. iT - 5.06e4T^{2} \)
41 \( 1 - 73.4iT - 6.89e4T^{2} \)
43 \( 1 + 370. iT - 7.95e4T^{2} \)
47 \( 1 + 446. iT - 1.03e5T^{2} \)
53 \( 1 + 490. iT - 1.48e5T^{2} \)
59 \( 1 - 2.36iT - 2.05e5T^{2} \)
61 \( 1 + 421.T + 2.26e5T^{2} \)
67 \( 1 - 478. iT - 3.00e5T^{2} \)
71 \( 1 - 620.T + 3.57e5T^{2} \)
73 \( 1 - 134. iT - 3.89e5T^{2} \)
79 \( 1 - 1.29e3iT - 4.93e5T^{2} \)
83 \( 1 - 821.T + 5.71e5T^{2} \)
89 \( 1 + 97.4T + 7.04e5T^{2} \)
97 \( 1 + 1.39e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.19418995596497977415181841295, −11.07661578186510351160823114248, −9.919898706662737770192269882787, −9.586791341293064407486423543556, −8.376424461057061449234704674619, −7.26493523585598922242397494303, −5.52812449735782225623433617016, −4.15535146785484474550135286974, −3.61671226931219655261970650566, −0.44546337465277901974141247278, 1.13265437742751612884298248742, 3.15816782516290855060022183964, 4.80322304640327027858157602378, 6.26737257219208374396409232551, 7.53974445672537423439423433485, 8.138037118070830885869391516545, 9.428873188772454293818376872481, 10.23611885949550243570126622390, 12.09947087182108253334666544909, 12.29421412697772777699819528799

Graph of the $Z$-function along the critical line