L(s) = 1 | − 2-s − 5.83i·3-s − 7·4-s − 20.8·5-s + 5.83i·6-s + (−5.36 − 17.7i)7-s + 15·8-s − 7·9-s + 20.8·10-s − 15.7i·11-s + 40.8i·12-s + 35.4i·13-s + (5.36 + 17.7i)14-s + 121. i·15-s + 41·16-s + 20.8·17-s + ⋯ |
L(s) = 1 | − 0.353·2-s − 1.12i·3-s − 0.875·4-s − 1.86·5-s + 0.396i·6-s + (−0.289 − 0.957i)7-s + 0.662·8-s − 0.259·9-s + 0.660·10-s − 0.432i·11-s + 0.981i·12-s + 0.755i·13-s + (0.102 + 0.338i)14-s + 2.09i·15-s + 0.640·16-s + 0.298·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.457 - 0.889i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.457 - 0.889i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.123645 + 0.0754193i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.123645 + 0.0754193i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (5.36 + 17.7i)T \) |
| 23 | \( 1 + (-79.2 - 76.7i)T \) |
good | 2 | \( 1 + T + 8T^{2} \) |
| 3 | \( 1 + 5.83iT - 27T^{2} \) |
| 5 | \( 1 + 20.8T + 125T^{2} \) |
| 11 | \( 1 + 15.7iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 35.4iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 20.8T + 4.91e3T^{2} \) |
| 19 | \( 1 + 92.0T + 6.85e3T^{2} \) |
| 29 | \( 1 + 150.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 172. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 69.9iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 446. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 83.5iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 8.86iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 588. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 522. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 170.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 895. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 241.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 775. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 514. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 209.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.21e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 379.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.73325526972453875352401305693, −11.63749993334397717280449517757, −10.77664477806464299382964179492, −9.310710130967167549306814605035, −8.066727129031217858452054154576, −7.63339963863715497070867790714, −6.64280829283607518514034145160, −4.50824449689643483457682610022, −3.65643574355506609155854116030, −1.01812641172274464070430000731,
0.10475180723656594614710010488, 3.38881974791101304656051919029, 4.30315103140294203612502694243, 5.21998034596156760689628180908, 7.27579216211827028271013002039, 8.453116326644554964734963502422, 8.988730493645139708556412173584, 10.22622428533802531785769460861, 10.99376964751838448986908130406, 12.30710996150054199989150989107