Properties

Label 2-161-1.1-c3-0-9
Degree $2$
Conductor $161$
Sign $1$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.89·2-s + 7.57·3-s + 15.9·4-s − 14.0·5-s − 37.1·6-s + 7·7-s − 39.1·8-s + 30.4·9-s + 68.6·10-s + 35.1·11-s + 121.·12-s + 16.8·13-s − 34.2·14-s − 106.·15-s + 63.6·16-s − 71.4·17-s − 149.·18-s + 133.·19-s − 224.·20-s + 53.0·21-s − 172.·22-s + 23·23-s − 296.·24-s + 71.5·25-s − 82.5·26-s + 26.1·27-s + 111.·28-s + ⋯
L(s)  = 1  − 1.73·2-s + 1.45·3-s + 1.99·4-s − 1.25·5-s − 2.52·6-s + 0.377·7-s − 1.72·8-s + 1.12·9-s + 2.17·10-s + 0.964·11-s + 2.91·12-s + 0.359·13-s − 0.654·14-s − 1.82·15-s + 0.995·16-s − 1.01·17-s − 1.95·18-s + 1.61·19-s − 2.50·20-s + 0.551·21-s − 1.66·22-s + 0.208·23-s − 2.52·24-s + 0.572·25-s − 0.622·26-s + 0.186·27-s + 0.755·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $1$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.104989260\)
\(L(\frac12)\) \(\approx\) \(1.104989260\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
23 \( 1 - 23T \)
good2 \( 1 + 4.89T + 8T^{2} \)
3 \( 1 - 7.57T + 27T^{2} \)
5 \( 1 + 14.0T + 125T^{2} \)
11 \( 1 - 35.1T + 1.33e3T^{2} \)
13 \( 1 - 16.8T + 2.19e3T^{2} \)
17 \( 1 + 71.4T + 4.91e3T^{2} \)
19 \( 1 - 133.T + 6.85e3T^{2} \)
29 \( 1 - 240.T + 2.43e4T^{2} \)
31 \( 1 - 105.T + 2.97e4T^{2} \)
37 \( 1 - 329.T + 5.06e4T^{2} \)
41 \( 1 + 304.T + 6.89e4T^{2} \)
43 \( 1 - 140.T + 7.95e4T^{2} \)
47 \( 1 - 298.T + 1.03e5T^{2} \)
53 \( 1 - 292.T + 1.48e5T^{2} \)
59 \( 1 + 62.9T + 2.05e5T^{2} \)
61 \( 1 - 593.T + 2.26e5T^{2} \)
67 \( 1 - 744.T + 3.00e5T^{2} \)
71 \( 1 + 277.T + 3.57e5T^{2} \)
73 \( 1 + 551.T + 3.89e5T^{2} \)
79 \( 1 + 929.T + 4.93e5T^{2} \)
83 \( 1 + 749.T + 5.71e5T^{2} \)
89 \( 1 - 1.12e3T + 7.04e5T^{2} \)
97 \( 1 + 1.46e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.87542680904860155354485847860, −11.32048202586634615096267482615, −9.982615059234090070294019109302, −9.011519261159110180393497374774, −8.423527456025767877324361339502, −7.69737196173257455539542391650, −6.83006638849255927392028746055, −4.09727562237209250355203207818, −2.73612913402671256650040092845, −1.08771885479055495262375618669, 1.08771885479055495262375618669, 2.73612913402671256650040092845, 4.09727562237209250355203207818, 6.83006638849255927392028746055, 7.69737196173257455539542391650, 8.423527456025767877324361339502, 9.011519261159110180393497374774, 9.982615059234090070294019109302, 11.32048202586634615096267482615, 11.87542680904860155354485847860

Graph of the $Z$-function along the critical line