Properties

Label 2-161-1.1-c3-0-7
Degree $2$
Conductor $161$
Sign $1$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.54·2-s − 2.15·3-s + 4.54·4-s + 6.95·5-s + 7.63·6-s + 7·7-s + 12.2·8-s − 22.3·9-s − 24.6·10-s − 54.7·11-s − 9.80·12-s + 8.53·13-s − 24.7·14-s − 14.9·15-s − 79.6·16-s + 62.6·17-s + 79.1·18-s + 88.4·19-s + 31.6·20-s − 15.0·21-s + 193.·22-s + 23·23-s − 26.3·24-s − 76.6·25-s − 30.2·26-s + 106.·27-s + 31.8·28-s + ⋯
L(s)  = 1  − 1.25·2-s − 0.414·3-s + 0.568·4-s + 0.622·5-s + 0.519·6-s + 0.377·7-s + 0.540·8-s − 0.827·9-s − 0.779·10-s − 1.49·11-s − 0.235·12-s + 0.182·13-s − 0.473·14-s − 0.258·15-s − 1.24·16-s + 0.893·17-s + 1.03·18-s + 1.06·19-s + 0.353·20-s − 0.156·21-s + 1.87·22-s + 0.208·23-s − 0.224·24-s − 0.612·25-s − 0.228·26-s + 0.758·27-s + 0.214·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $1$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7177207171\)
\(L(\frac12)\) \(\approx\) \(0.7177207171\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
23 \( 1 - 23T \)
good2 \( 1 + 3.54T + 8T^{2} \)
3 \( 1 + 2.15T + 27T^{2} \)
5 \( 1 - 6.95T + 125T^{2} \)
11 \( 1 + 54.7T + 1.33e3T^{2} \)
13 \( 1 - 8.53T + 2.19e3T^{2} \)
17 \( 1 - 62.6T + 4.91e3T^{2} \)
19 \( 1 - 88.4T + 6.85e3T^{2} \)
29 \( 1 - 110.T + 2.43e4T^{2} \)
31 \( 1 - 272.T + 2.97e4T^{2} \)
37 \( 1 - 76.8T + 5.06e4T^{2} \)
41 \( 1 - 72.5T + 6.89e4T^{2} \)
43 \( 1 - 450.T + 7.95e4T^{2} \)
47 \( 1 - 365.T + 1.03e5T^{2} \)
53 \( 1 + 522.T + 1.48e5T^{2} \)
59 \( 1 + 317.T + 2.05e5T^{2} \)
61 \( 1 - 699.T + 2.26e5T^{2} \)
67 \( 1 + 225.T + 3.00e5T^{2} \)
71 \( 1 + 415.T + 3.57e5T^{2} \)
73 \( 1 + 18.5T + 3.89e5T^{2} \)
79 \( 1 - 945.T + 4.93e5T^{2} \)
83 \( 1 - 1.15e3T + 5.71e5T^{2} \)
89 \( 1 + 795.T + 7.04e5T^{2} \)
97 \( 1 - 1.16e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.14177264735223432443597377729, −11.03828161773049071470213145309, −10.29354388094523544206508278054, −9.447169916596136662269554278984, −8.259544495689443186379034401583, −7.59127063114807033611605478235, −5.95449043409692466660319037341, −4.97101526763009422107657436266, −2.62134566953475994401504504838, −0.844548971227182311482623532936, 0.844548971227182311482623532936, 2.62134566953475994401504504838, 4.97101526763009422107657436266, 5.95449043409692466660319037341, 7.59127063114807033611605478235, 8.259544495689443186379034401583, 9.447169916596136662269554278984, 10.29354388094523544206508278054, 11.03828161773049071470213145309, 12.14177264735223432443597377729

Graph of the $Z$-function along the critical line