Properties

Label 2-161-1.1-c3-0-4
Degree $2$
Conductor $161$
Sign $1$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.11·2-s − 9.53·3-s − 3.51·4-s − 13.8·5-s − 20.2·6-s + 7·7-s − 24.3·8-s + 64.0·9-s − 29.3·10-s + 44.5·11-s + 33.4·12-s − 14.0·13-s + 14.8·14-s + 132.·15-s − 23.5·16-s + 73.5·17-s + 135.·18-s − 144.·19-s + 48.6·20-s − 66.7·21-s + 94.2·22-s + 23·23-s + 232.·24-s + 66.8·25-s − 29.7·26-s − 352.·27-s − 24.5·28-s + ⋯
L(s)  = 1  + 0.749·2-s − 1.83·3-s − 0.438·4-s − 1.23·5-s − 1.37·6-s + 0.377·7-s − 1.07·8-s + 2.37·9-s − 0.928·10-s + 1.21·11-s + 0.805·12-s − 0.299·13-s + 0.283·14-s + 2.27·15-s − 0.368·16-s + 1.04·17-s + 1.77·18-s − 1.74·19-s + 0.543·20-s − 0.693·21-s + 0.913·22-s + 0.208·23-s + 1.97·24-s + 0.535·25-s − 0.224·26-s − 2.51·27-s − 0.165·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $1$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.7583306352\)
\(L(\frac12)\) \(\approx\) \(0.7583306352\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
23 \( 1 - 23T \)
good2 \( 1 - 2.11T + 8T^{2} \)
3 \( 1 + 9.53T + 27T^{2} \)
5 \( 1 + 13.8T + 125T^{2} \)
11 \( 1 - 44.5T + 1.33e3T^{2} \)
13 \( 1 + 14.0T + 2.19e3T^{2} \)
17 \( 1 - 73.5T + 4.91e3T^{2} \)
19 \( 1 + 144.T + 6.85e3T^{2} \)
29 \( 1 + 151.T + 2.43e4T^{2} \)
31 \( 1 - 267.T + 2.97e4T^{2} \)
37 \( 1 - 217.T + 5.06e4T^{2} \)
41 \( 1 - 292.T + 6.89e4T^{2} \)
43 \( 1 - 258.T + 7.95e4T^{2} \)
47 \( 1 + 134.T + 1.03e5T^{2} \)
53 \( 1 + 358.T + 1.48e5T^{2} \)
59 \( 1 - 726.T + 2.05e5T^{2} \)
61 \( 1 + 22.6T + 2.26e5T^{2} \)
67 \( 1 - 441.T + 3.00e5T^{2} \)
71 \( 1 + 42.7T + 3.57e5T^{2} \)
73 \( 1 + 414.T + 3.89e5T^{2} \)
79 \( 1 - 1.24e3T + 4.93e5T^{2} \)
83 \( 1 + 235.T + 5.71e5T^{2} \)
89 \( 1 + 229.T + 7.04e5T^{2} \)
97 \( 1 + 548.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.23137791996109344869070449771, −11.68991067162480322662783153240, −10.90613259181043581359288881480, −9.570298350380192078944310701622, −8.047375685008354031018159752901, −6.69696682142711672700099264381, −5.76082497388056108456869102233, −4.52968510417035055692680212116, −4.00312890749249220447446320083, −0.69125718611234209828944770447, 0.69125718611234209828944770447, 4.00312890749249220447446320083, 4.52968510417035055692680212116, 5.76082497388056108456869102233, 6.69696682142711672700099264381, 8.047375685008354031018159752901, 9.570298350380192078944310701622, 10.90613259181043581359288881480, 11.68991067162480322662783153240, 12.23137791996109344869070449771

Graph of the $Z$-function along the critical line