Properties

Label 2-161-1.1-c3-0-31
Degree $2$
Conductor $161$
Sign $-1$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.59·2-s − 4.68·3-s + 4.94·4-s − 3.25·5-s − 16.8·6-s + 7·7-s − 10.9·8-s − 5.03·9-s − 11.7·10-s − 52.7·11-s − 23.1·12-s − 2.09·13-s + 25.1·14-s + 15.2·15-s − 79.1·16-s − 14.6·17-s − 18.1·18-s + 6.38·19-s − 16.1·20-s − 32.8·21-s − 189.·22-s − 23·23-s + 51.5·24-s − 114.·25-s − 7.54·26-s + 150.·27-s + 34.6·28-s + ⋯
L(s)  = 1  + 1.27·2-s − 0.901·3-s + 0.617·4-s − 0.291·5-s − 1.14·6-s + 0.377·7-s − 0.485·8-s − 0.186·9-s − 0.370·10-s − 1.44·11-s − 0.557·12-s − 0.0447·13-s + 0.480·14-s + 0.262·15-s − 1.23·16-s − 0.208·17-s − 0.237·18-s + 0.0770·19-s − 0.180·20-s − 0.340·21-s − 1.83·22-s − 0.208·23-s + 0.438·24-s − 0.915·25-s − 0.0569·26-s + 1.07·27-s + 0.233·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
23 \( 1 + 23T \)
good2 \( 1 - 3.59T + 8T^{2} \)
3 \( 1 + 4.68T + 27T^{2} \)
5 \( 1 + 3.25T + 125T^{2} \)
11 \( 1 + 52.7T + 1.33e3T^{2} \)
13 \( 1 + 2.09T + 2.19e3T^{2} \)
17 \( 1 + 14.6T + 4.91e3T^{2} \)
19 \( 1 - 6.38T + 6.85e3T^{2} \)
29 \( 1 - 101.T + 2.43e4T^{2} \)
31 \( 1 + 96.9T + 2.97e4T^{2} \)
37 \( 1 + 219.T + 5.06e4T^{2} \)
41 \( 1 - 462.T + 6.89e4T^{2} \)
43 \( 1 - 148.T + 7.95e4T^{2} \)
47 \( 1 + 16.0T + 1.03e5T^{2} \)
53 \( 1 - 408.T + 1.48e5T^{2} \)
59 \( 1 - 194.T + 2.05e5T^{2} \)
61 \( 1 - 272.T + 2.26e5T^{2} \)
67 \( 1 + 811.T + 3.00e5T^{2} \)
71 \( 1 + 867.T + 3.57e5T^{2} \)
73 \( 1 + 948.T + 3.89e5T^{2} \)
79 \( 1 + 149.T + 4.93e5T^{2} \)
83 \( 1 + 824.T + 5.71e5T^{2} \)
89 \( 1 - 370.T + 7.04e5T^{2} \)
97 \( 1 + 1.64e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.02406528810075461391662929152, −11.27517870330097411214719799473, −10.33628988617405612438342974779, −8.700143603857458454532589729990, −7.40490681274235955905233320692, −5.95502731641321939422691887783, −5.30817924700667502704616589378, −4.27284430159394407740732167527, −2.71018609025086626802747110317, 0, 2.71018609025086626802747110317, 4.27284430159394407740732167527, 5.30817924700667502704616589378, 5.95502731641321939422691887783, 7.40490681274235955905233320692, 8.700143603857458454532589729990, 10.33628988617405612438342974779, 11.27517870330097411214719799473, 12.02406528810075461391662929152

Graph of the $Z$-function along the critical line