Properties

Label 2-161-1.1-c3-0-22
Degree $2$
Conductor $161$
Sign $-1$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.59·2-s + 5.80·3-s − 1.24·4-s − 7.55·5-s − 15.0·6-s + 7·7-s + 24.0·8-s + 6.72·9-s + 19.6·10-s − 32.2·11-s − 7.24·12-s − 31.5·13-s − 18.1·14-s − 43.9·15-s − 52.4·16-s + 20.7·17-s − 17.4·18-s − 64.8·19-s + 9.43·20-s + 40.6·21-s + 83.8·22-s − 23·23-s + 139.·24-s − 67.8·25-s + 81.9·26-s − 117.·27-s − 8.73·28-s + ⋯
L(s)  = 1  − 0.918·2-s + 1.11·3-s − 0.155·4-s − 0.676·5-s − 1.02·6-s + 0.377·7-s + 1.06·8-s + 0.249·9-s + 0.621·10-s − 0.884·11-s − 0.174·12-s − 0.673·13-s − 0.347·14-s − 0.755·15-s − 0.819·16-s + 0.296·17-s − 0.228·18-s − 0.783·19-s + 0.105·20-s + 0.422·21-s + 0.812·22-s − 0.208·23-s + 1.18·24-s − 0.542·25-s + 0.618·26-s − 0.839·27-s − 0.0589·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
23 \( 1 + 23T \)
good2 \( 1 + 2.59T + 8T^{2} \)
3 \( 1 - 5.80T + 27T^{2} \)
5 \( 1 + 7.55T + 125T^{2} \)
11 \( 1 + 32.2T + 1.33e3T^{2} \)
13 \( 1 + 31.5T + 2.19e3T^{2} \)
17 \( 1 - 20.7T + 4.91e3T^{2} \)
19 \( 1 + 64.8T + 6.85e3T^{2} \)
29 \( 1 + 33.2T + 2.43e4T^{2} \)
31 \( 1 - 46.7T + 2.97e4T^{2} \)
37 \( 1 + 383.T + 5.06e4T^{2} \)
41 \( 1 + 120.T + 6.89e4T^{2} \)
43 \( 1 + 151.T + 7.95e4T^{2} \)
47 \( 1 + 390.T + 1.03e5T^{2} \)
53 \( 1 - 640.T + 1.48e5T^{2} \)
59 \( 1 - 616.T + 2.05e5T^{2} \)
61 \( 1 + 483.T + 2.26e5T^{2} \)
67 \( 1 - 862.T + 3.00e5T^{2} \)
71 \( 1 - 313.T + 3.57e5T^{2} \)
73 \( 1 + 523.T + 3.89e5T^{2} \)
79 \( 1 - 930.T + 4.93e5T^{2} \)
83 \( 1 + 12.2T + 5.71e5T^{2} \)
89 \( 1 - 255.T + 7.04e5T^{2} \)
97 \( 1 + 306.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.80122367853324877737654252846, −10.55887912895033609390463633760, −9.708350427645078208614130299181, −8.549028511037897231809960484370, −8.113854480827379320450720249486, −7.24724736914142766901994889285, −5.07862093478304879857072719133, −3.72589997974349443797012457721, −2.12747082233323676914934424053, 0, 2.12747082233323676914934424053, 3.72589997974349443797012457721, 5.07862093478304879857072719133, 7.24724736914142766901994889285, 8.113854480827379320450720249486, 8.549028511037897231809960484370, 9.708350427645078208614130299181, 10.55887912895033609390463633760, 11.80122367853324877737654252846

Graph of the $Z$-function along the critical line