Properties

Label 2-161-1.1-c3-0-16
Degree $2$
Conductor $161$
Sign $-1$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.59·2-s − 8.64·3-s − 5.45·4-s + 11.1·5-s + 13.7·6-s + 7·7-s + 21.4·8-s + 47.7·9-s − 17.7·10-s − 11.0·11-s + 47.1·12-s + 7.81·13-s − 11.1·14-s − 95.9·15-s + 9.42·16-s − 45.3·17-s − 76.1·18-s − 5.00·19-s − 60.5·20-s − 60.5·21-s + 17.6·22-s − 23·23-s − 185.·24-s − 1.76·25-s − 12.4·26-s − 179.·27-s − 38.1·28-s + ⋯
L(s)  = 1  − 0.563·2-s − 1.66·3-s − 0.682·4-s + 0.992·5-s + 0.938·6-s + 0.377·7-s + 0.948·8-s + 1.76·9-s − 0.559·10-s − 0.303·11-s + 1.13·12-s + 0.166·13-s − 0.213·14-s − 1.65·15-s + 0.147·16-s − 0.647·17-s − 0.996·18-s − 0.0604·19-s − 0.677·20-s − 0.628·21-s + 0.170·22-s − 0.208·23-s − 1.57·24-s − 0.0140·25-s − 0.0940·26-s − 1.27·27-s − 0.257·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $-1$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
23 \( 1 + 23T \)
good2 \( 1 + 1.59T + 8T^{2} \)
3 \( 1 + 8.64T + 27T^{2} \)
5 \( 1 - 11.1T + 125T^{2} \)
11 \( 1 + 11.0T + 1.33e3T^{2} \)
13 \( 1 - 7.81T + 2.19e3T^{2} \)
17 \( 1 + 45.3T + 4.91e3T^{2} \)
19 \( 1 + 5.00T + 6.85e3T^{2} \)
29 \( 1 + 164.T + 2.43e4T^{2} \)
31 \( 1 + 19.4T + 2.97e4T^{2} \)
37 \( 1 - 247.T + 5.06e4T^{2} \)
41 \( 1 - 211.T + 6.89e4T^{2} \)
43 \( 1 + 417.T + 7.95e4T^{2} \)
47 \( 1 + 431.T + 1.03e5T^{2} \)
53 \( 1 - 366.T + 1.48e5T^{2} \)
59 \( 1 + 595.T + 2.05e5T^{2} \)
61 \( 1 + 406.T + 2.26e5T^{2} \)
67 \( 1 + 478.T + 3.00e5T^{2} \)
71 \( 1 + 879.T + 3.57e5T^{2} \)
73 \( 1 + 66.7T + 3.89e5T^{2} \)
79 \( 1 + 1.21e3T + 4.93e5T^{2} \)
83 \( 1 - 1.35e3T + 5.71e5T^{2} \)
89 \( 1 - 228.T + 7.04e5T^{2} \)
97 \( 1 - 768.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.68210056327342000559263061110, −10.77024700501191045966067951121, −10.03927660017257360196391608718, −9.096429534082530348866448519367, −7.66728553438251851464320241972, −6.28930905252497771126092456970, −5.40483863448746523918415306943, −4.45300354138034084273989391449, −1.55620877715818817571681823830, 0, 1.55620877715818817571681823830, 4.45300354138034084273989391449, 5.40483863448746523918415306943, 6.28930905252497771126092456970, 7.66728553438251851464320241972, 9.096429534082530348866448519367, 10.03927660017257360196391608718, 10.77024700501191045966067951121, 11.68210056327342000559263061110

Graph of the $Z$-function along the critical line