Properties

Label 2-161-1.1-c3-0-15
Degree $2$
Conductor $161$
Sign $1$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.285·2-s + 8.01·3-s − 7.91·4-s + 1.18·5-s + 2.29·6-s + 7·7-s − 4.55·8-s + 37.2·9-s + 0.337·10-s + 31.7·11-s − 63.4·12-s + 72.6·13-s + 2.00·14-s + 9.46·15-s + 62.0·16-s + 20.0·17-s + 10.6·18-s + 13.6·19-s − 9.35·20-s + 56.0·21-s + 9.06·22-s + 23·23-s − 36.4·24-s − 123.·25-s + 20.7·26-s + 81.7·27-s − 55.4·28-s + ⋯
L(s)  = 1  + 0.101·2-s + 1.54·3-s − 0.989·4-s + 0.105·5-s + 0.155·6-s + 0.377·7-s − 0.201·8-s + 1.37·9-s + 0.0106·10-s + 0.869·11-s − 1.52·12-s + 1.54·13-s + 0.0382·14-s + 0.163·15-s + 0.969·16-s + 0.285·17-s + 0.139·18-s + 0.164·19-s − 0.104·20-s + 0.582·21-s + 0.0878·22-s + 0.208·23-s − 0.310·24-s − 0.988·25-s + 0.156·26-s + 0.582·27-s − 0.374·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $1$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.672790324\)
\(L(\frac12)\) \(\approx\) \(2.672790324\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
23 \( 1 - 23T \)
good2 \( 1 - 0.285T + 8T^{2} \)
3 \( 1 - 8.01T + 27T^{2} \)
5 \( 1 - 1.18T + 125T^{2} \)
11 \( 1 - 31.7T + 1.33e3T^{2} \)
13 \( 1 - 72.6T + 2.19e3T^{2} \)
17 \( 1 - 20.0T + 4.91e3T^{2} \)
19 \( 1 - 13.6T + 6.85e3T^{2} \)
29 \( 1 + 184.T + 2.43e4T^{2} \)
31 \( 1 - 38.7T + 2.97e4T^{2} \)
37 \( 1 + 275.T + 5.06e4T^{2} \)
41 \( 1 - 369.T + 6.89e4T^{2} \)
43 \( 1 + 146.T + 7.95e4T^{2} \)
47 \( 1 - 28.1T + 1.03e5T^{2} \)
53 \( 1 + 159.T + 1.48e5T^{2} \)
59 \( 1 + 271.T + 2.05e5T^{2} \)
61 \( 1 - 851.T + 2.26e5T^{2} \)
67 \( 1 + 526.T + 3.00e5T^{2} \)
71 \( 1 + 518.T + 3.57e5T^{2} \)
73 \( 1 + 945.T + 3.89e5T^{2} \)
79 \( 1 + 291.T + 4.93e5T^{2} \)
83 \( 1 + 186.T + 5.71e5T^{2} \)
89 \( 1 + 1.59e3T + 7.04e5T^{2} \)
97 \( 1 - 1.49e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.85760214257950627200014065247, −11.45884063599040712149674431944, −10.01181285025805769262216190827, −9.040207429890701795560356132193, −8.570084542331183782442244086402, −7.54069714715377030393993458242, −5.83495073452518751299726959879, −4.16331727248465649255993031164, −3.40486653860510279770925765555, −1.50979772384424093941421548204, 1.50979772384424093941421548204, 3.40486653860510279770925765555, 4.16331727248465649255993031164, 5.83495073452518751299726959879, 7.54069714715377030393993458242, 8.570084542331183782442244086402, 9.040207429890701795560356132193, 10.01181285025805769262216190827, 11.45884063599040712149674431944, 12.85760214257950627200014065247

Graph of the $Z$-function along the critical line