L(s) = 1 | + 4i·3-s + (−3 − 10.7i)5-s + 4i·7-s + 11·9-s + 43.0·11-s − 21.5i·13-s + (43.0 − 12i)15-s + 43.0i·17-s + 129.·19-s − 16·21-s + 52i·23-s + (−106. + 64.6i)25-s + 152i·27-s + 158·29-s + 172.·31-s + ⋯ |
L(s) = 1 | + 0.769i·3-s + (−0.268 − 0.963i)5-s + 0.215i·7-s + 0.407·9-s + 1.18·11-s − 0.459i·13-s + (0.741 − 0.206i)15-s + 0.614i·17-s + 1.56·19-s − 0.166·21-s + 0.471i·23-s + (−0.855 + 0.516i)25-s + 1.08i·27-s + 1.01·29-s + 0.998·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.963 - 0.268i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.963 - 0.268i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.79387 + 0.245169i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.79387 + 0.245169i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (3 + 10.7i)T \) |
good | 3 | \( 1 - 4iT - 27T^{2} \) |
| 7 | \( 1 - 4iT - 343T^{2} \) |
| 11 | \( 1 - 43.0T + 1.33e3T^{2} \) |
| 13 | \( 1 + 21.5iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 43.0iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 129.T + 6.85e3T^{2} \) |
| 23 | \( 1 - 52iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 158T + 2.43e4T^{2} \) |
| 31 | \( 1 - 172.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 280. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 170T + 6.89e4T^{2} \) |
| 43 | \( 1 + 316iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 244iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 495. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 646.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 82T + 2.26e5T^{2} \) |
| 67 | \( 1 - 692iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 947.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 430. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 344.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 940iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 6T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.07e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.30855508280060714312622695578, −11.62684779532619559462505513849, −10.26147966227456129931269072204, −9.412093454282205897441633870589, −8.581015133900787638585976708754, −7.29200167871871505631574407063, −5.71813857381781443420758680905, −4.59556653044008796313367933416, −3.57624059174523308072536096129, −1.21550010448682081652846694696,
1.22327310670979721906030170278, 2.97719984717727987598100411914, 4.43679408326166539813123857555, 6.37414563291957369167499277192, 6.98260088424000844185668824631, 7.926000041032225876137078552307, 9.409417574566811629190738295297, 10.37842410334891470796923830883, 11.75351130739402439524569766058, 12.03243239844456277947792620712