Properties

Label 2-160-5.4-c3-0-12
Degree $2$
Conductor $160$
Sign $i$
Analytic cond. $9.44030$
Root an. cond. $3.07250$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.23i·3-s − 11.1·5-s − 33.5i·7-s − 58.3·9-s − 103. i·15-s + 310.·21-s − 73.8i·23-s + 125.·25-s − 289. i·27-s − 306·29-s + 375. i·35-s − 460.·41-s − 563. i·43-s + 651.·45-s + 41.1i·47-s + ⋯
L(s)  = 1  + 1.77i·3-s − 0.999·5-s − 1.81i·7-s − 2.15·9-s − 1.77i·15-s + 3.22·21-s − 0.669i·23-s + 1.00·25-s − 2.06i·27-s − 1.95·29-s + 1.81i·35-s − 1.75·41-s − 1.99i·43-s + 2.15·45-s + 0.127i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(160\)    =    \(2^{5} \cdot 5\)
Sign: $i$
Analytic conductor: \(9.44030\)
Root analytic conductor: \(3.07250\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{160} (129, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 160,\ (\ :3/2),\ i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.257279 - 0.257279i\)
\(L(\frac12)\) \(\approx\) \(0.257279 - 0.257279i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 11.1T \)
good3 \( 1 - 9.23iT - 27T^{2} \)
7 \( 1 + 33.5iT - 343T^{2} \)
11 \( 1 + 1.33e3T^{2} \)
13 \( 1 - 2.19e3T^{2} \)
17 \( 1 - 4.91e3T^{2} \)
19 \( 1 + 6.85e3T^{2} \)
23 \( 1 + 73.8iT - 1.21e4T^{2} \)
29 \( 1 + 306T + 2.43e4T^{2} \)
31 \( 1 + 2.97e4T^{2} \)
37 \( 1 - 5.06e4T^{2} \)
41 \( 1 + 460.T + 6.89e4T^{2} \)
43 \( 1 + 563. iT - 7.95e4T^{2} \)
47 \( 1 - 41.1iT - 1.03e5T^{2} \)
53 \( 1 - 1.48e5T^{2} \)
59 \( 1 + 2.05e5T^{2} \)
61 \( 1 + 40.2T + 2.26e5T^{2} \)
67 \( 1 + 1.16iT - 3.00e5T^{2} \)
71 \( 1 + 3.57e5T^{2} \)
73 \( 1 - 3.89e5T^{2} \)
79 \( 1 + 4.93e5T^{2} \)
83 \( 1 - 989. iT - 5.71e5T^{2} \)
89 \( 1 - 1.38e3T + 7.04e5T^{2} \)
97 \( 1 - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.79421322137087531019754607750, −10.79596179798570009025476218345, −10.43086524135136490420810291785, −9.294884277794209984645886575814, −8.121616736501044980628185671036, −6.98578195471648706148523551539, −5.10593770879553400022617563211, −4.05964249130542937344421446193, −3.55265180026937262639531173105, −0.16759679735773697081094993538, 1.78298412618732499995550685063, 3.08780382429683217382433433786, 5.35982987533224370712558748595, 6.38507898824676997381134157602, 7.52858319916217016773528016669, 8.296471432672225401798581744118, 9.187789002479131000662147010356, 11.35534469946696054925723903055, 11.80030221658430394044630585935, 12.59591299524810132180713244891

Graph of the $Z$-function along the critical line