| L(s) = 1 | + (−11 + 2i)5-s + 27·9-s − 92i·13-s − 104i·17-s + (117 − 44i)25-s − 130·29-s − 396i·37-s + 230·41-s + (−297 + 54i)45-s + 343·49-s + 572i·53-s − 830·61-s + (184 + 1.01e3i)65-s + 592i·73-s + 729·81-s + ⋯ |
| L(s) = 1 | + (−0.983 + 0.178i)5-s + 9-s − 1.96i·13-s − 1.48i·17-s + (0.936 − 0.351i)25-s − 0.832·29-s − 1.75i·37-s + 0.876·41-s + (−0.983 + 0.178i)45-s + 49-s + 1.48i·53-s − 1.74·61-s + (0.351 + 1.93i)65-s + 0.949i·73-s + 0.999·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.178 + 0.983i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.178 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(0.931654 - 0.777537i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.931654 - 0.777537i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (11 - 2i)T \) |
| good | 3 | \( 1 - 27T^{2} \) |
| 7 | \( 1 - 343T^{2} \) |
| 11 | \( 1 + 1.33e3T^{2} \) |
| 13 | \( 1 + 92iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 104iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 6.85e3T^{2} \) |
| 23 | \( 1 - 1.21e4T^{2} \) |
| 29 | \( 1 + 130T + 2.43e4T^{2} \) |
| 31 | \( 1 + 2.97e4T^{2} \) |
| 37 | \( 1 + 396iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 230T + 6.89e4T^{2} \) |
| 43 | \( 1 - 7.95e4T^{2} \) |
| 47 | \( 1 - 1.03e5T^{2} \) |
| 53 | \( 1 - 572iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 2.05e5T^{2} \) |
| 61 | \( 1 + 830T + 2.26e5T^{2} \) |
| 67 | \( 1 - 3.00e5T^{2} \) |
| 71 | \( 1 + 3.57e5T^{2} \) |
| 73 | \( 1 - 592iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 4.93e5T^{2} \) |
| 83 | \( 1 - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.67e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.81e3iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.33438326636382023820350981237, −11.13828778032039690429166899346, −10.32965164092662315422138116212, −9.135796436023538109969097023523, −7.72137854563861520887544976189, −7.27035454540997435946165121041, −5.56107479388189344856367190790, −4.24929507049613099274517542243, −2.94377924312846552352482580074, −0.61113760722332229735968895935,
1.62138251422118657619404990248, 3.81647198083376130530739013199, 4.58320432736613966477524676957, 6.42903827211856340155560119709, 7.38132275662760033118377177323, 8.498110829954472867085482213523, 9.539483853163395076468002903218, 10.75882802284608102179476389221, 11.72079607174343008749620411088, 12.52933640257135710953824103606