L(s) = 1 | + (−2 + 2i)3-s + (−2 − i)5-s + (−2 − 2i)7-s − 5i·9-s + (−1 − i)13-s + (6 − 2i)15-s + (−5 + 5i)17-s − 4·19-s + 8·21-s + (−2 + 2i)23-s + (3 + 4i)25-s + (4 + 4i)27-s + 4i·29-s − 4i·31-s + (2 + 6i)35-s + ⋯ |
L(s) = 1 | + (−1.15 + 1.15i)3-s + (−0.894 − 0.447i)5-s + (−0.755 − 0.755i)7-s − 1.66i·9-s + (−0.277 − 0.277i)13-s + (1.54 − 0.516i)15-s + (−1.21 + 1.21i)17-s − 0.917·19-s + 1.74·21-s + (−0.417 + 0.417i)23-s + (0.600 + 0.800i)25-s + (0.769 + 0.769i)27-s + 0.742i·29-s − 0.718i·31-s + (0.338 + 1.01i)35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.850 + 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2 + i)T \) |
good | 3 | \( 1 + (2 - 2i)T - 3iT^{2} \) |
| 7 | \( 1 + (2 + 2i)T + 7iT^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + (1 + i)T + 13iT^{2} \) |
| 17 | \( 1 + (5 - 5i)T - 17iT^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + (2 - 2i)T - 23iT^{2} \) |
| 29 | \( 1 - 4iT - 29T^{2} \) |
| 31 | \( 1 + 4iT - 31T^{2} \) |
| 37 | \( 1 + (-1 + i)T - 37iT^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + (-6 + 6i)T - 43iT^{2} \) |
| 47 | \( 1 + (-2 - 2i)T + 47iT^{2} \) |
| 53 | \( 1 + (7 + 7i)T + 53iT^{2} \) |
| 59 | \( 1 + 4T + 59T^{2} \) |
| 61 | \( 1 + 4T + 61T^{2} \) |
| 67 | \( 1 + (-10 - 10i)T + 67iT^{2} \) |
| 71 | \( 1 - 12iT - 71T^{2} \) |
| 73 | \( 1 + (3 + 3i)T + 73iT^{2} \) |
| 79 | \( 1 + 16T + 79T^{2} \) |
| 83 | \( 1 + (-2 + 2i)T - 83iT^{2} \) |
| 89 | \( 1 - 89T^{2} \) |
| 97 | \( 1 + (3 - 3i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.39120829607980716833016442920, −11.21213632369939348194190299961, −10.65330872072270715417064095239, −9.694235667765133118993808626927, −8.493258516651058848658419487236, −6.98204015859890003664557088210, −5.82427128957150840200781620625, −4.44760348718601702809622473482, −3.81985278896428350058783924405, 0,
2.55316889778586010739924050045, 4.62121038175294800783863441427, 6.17238974846732228512913187291, 6.76496165610320624134231613644, 7.79991666445786904202477652183, 9.155775512676237659889010969563, 10.72216362126657541072761406516, 11.53149773793812008891315253886, 12.24639074133331883143606070816