| L(s) = 1 | + (−2.18 − 1.79i)2-s + (7.10 + 2.94i)3-s + (1.55 + 7.84i)4-s + (10.5 + 3.62i)5-s + (−10.2 − 19.1i)6-s + 2.95·7-s + (10.6 − 19.9i)8-s + (22.7 + 22.7i)9-s + (−16.6 − 26.9i)10-s + (15.3 − 37.1i)11-s + (−12.0 + 60.3i)12-s + (15.7 + 6.51i)13-s + (−6.46 − 5.31i)14-s + (64.4 + 56.8i)15-s + (−59.1 + 24.3i)16-s + (−34.2 + 34.2i)17-s + ⋯ |
| L(s) = 1 | + (−0.772 − 0.634i)2-s + (1.36 + 0.566i)3-s + (0.194 + 0.980i)4-s + (0.945 + 0.324i)5-s + (−0.696 − 1.30i)6-s + 0.159·7-s + (0.472 − 0.881i)8-s + (0.840 + 0.840i)9-s + (−0.524 − 0.851i)10-s + (0.421 − 1.01i)11-s + (−0.289 + 1.45i)12-s + (0.335 + 0.139i)13-s + (−0.123 − 0.101i)14-s + (1.10 + 0.979i)15-s + (−0.924 + 0.380i)16-s + (−0.488 + 0.488i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.122i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.992 - 0.122i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.17439 + 0.133486i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.17439 + 0.133486i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (2.18 + 1.79i)T \) |
| 5 | \( 1 + (-10.5 - 3.62i)T \) |
| good | 3 | \( 1 + (-7.10 - 2.94i)T + (19.0 + 19.0i)T^{2} \) |
| 7 | \( 1 - 2.95T + 343T^{2} \) |
| 11 | \( 1 + (-15.3 + 37.1i)T + (-941. - 941. i)T^{2} \) |
| 13 | \( 1 + (-15.7 - 6.51i)T + (1.55e3 + 1.55e3i)T^{2} \) |
| 17 | \( 1 + (34.2 - 34.2i)T - 4.91e3iT^{2} \) |
| 19 | \( 1 + (-31.8 - 76.8i)T + (-4.85e3 + 4.85e3i)T^{2} \) |
| 23 | \( 1 + 38.1T + 1.21e4T^{2} \) |
| 29 | \( 1 + (30.6 + 74.0i)T + (-1.72e4 + 1.72e4i)T^{2} \) |
| 31 | \( 1 - 122. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-22.0 + 9.12i)T + (3.58e4 - 3.58e4i)T^{2} \) |
| 41 | \( 1 + (-325. + 325. i)T - 6.89e4iT^{2} \) |
| 43 | \( 1 + (147. + 355. i)T + (-5.62e4 + 5.62e4i)T^{2} \) |
| 47 | \( 1 + (-296. - 296. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (287. - 119. i)T + (1.05e5 - 1.05e5i)T^{2} \) |
| 59 | \( 1 + (177. - 428. i)T + (-1.45e5 - 1.45e5i)T^{2} \) |
| 61 | \( 1 + (830. - 344. i)T + (1.60e5 - 1.60e5i)T^{2} \) |
| 67 | \( 1 + (-285. + 689. i)T + (-2.12e5 - 2.12e5i)T^{2} \) |
| 71 | \( 1 + (48.8 - 48.8i)T - 3.57e5iT^{2} \) |
| 73 | \( 1 + 603. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 642. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-366. + 885. i)T + (-4.04e5 - 4.04e5i)T^{2} \) |
| 89 | \( 1 + (772. - 772. i)T - 7.04e5iT^{2} \) |
| 97 | \( 1 + (916. + 916. i)T + 9.12e5iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.43009541431784830208833578624, −11.02138056064117159782199468001, −10.26332874123941839522929008278, −9.253946391064849652330232014627, −8.736708730281610785155771446329, −7.68698625530000614991067491602, −6.12656002287468258513865185272, −3.97213586142730126323823778687, −2.96722537148488824238324950816, −1.70568888773887357586493383748,
1.41505246814984426864573464249, 2.50951188563612061627458830999, 4.80320813610579441071706486529, 6.36035467173971117404496675121, 7.33809802192082752014092790095, 8.309745862738522147496787128066, 9.309648554331186552391240149360, 9.684757967413166762450712148866, 11.19923274913198922617044622995, 12.81534157079308329259672872523