| L(s) = 1 | + (2.82 − 0.0971i)2-s + (−7.69 − 3.18i)3-s + (7.98 − 0.549i)4-s + (5.57 + 9.69i)5-s + (−22.0 − 8.26i)6-s − 1.12·7-s + (22.5 − 2.32i)8-s + (29.9 + 29.9i)9-s + (16.6 + 26.8i)10-s + (3.90 − 9.42i)11-s + (−63.1 − 21.2i)12-s + (51.7 + 21.4i)13-s + (−3.18 + 0.109i)14-s + (−11.9 − 92.3i)15-s + (63.3 − 8.76i)16-s + (86.0 − 86.0i)17-s + ⋯ |
| L(s) = 1 | + (0.999 − 0.0343i)2-s + (−1.48 − 0.613i)3-s + (0.997 − 0.0686i)4-s + (0.498 + 0.866i)5-s + (−1.50 − 0.562i)6-s − 0.0607·7-s + (0.994 − 0.102i)8-s + (1.10 + 1.10i)9-s + (0.527 + 0.849i)10-s + (0.107 − 0.258i)11-s + (−1.51 − 0.510i)12-s + (1.10 + 0.457i)13-s + (−0.0607 + 0.00208i)14-s + (−0.206 − 1.58i)15-s + (0.990 − 0.136i)16-s + (1.22 − 1.22i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.127i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.991 + 0.127i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.31989 - 0.148062i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.31989 - 0.148062i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-2.82 + 0.0971i)T \) |
| 5 | \( 1 + (-5.57 - 9.69i)T \) |
| good | 3 | \( 1 + (7.69 + 3.18i)T + (19.0 + 19.0i)T^{2} \) |
| 7 | \( 1 + 1.12T + 343T^{2} \) |
| 11 | \( 1 + (-3.90 + 9.42i)T + (-941. - 941. i)T^{2} \) |
| 13 | \( 1 + (-51.7 - 21.4i)T + (1.55e3 + 1.55e3i)T^{2} \) |
| 17 | \( 1 + (-86.0 + 86.0i)T - 4.91e3iT^{2} \) |
| 19 | \( 1 + (-3.08 - 7.43i)T + (-4.85e3 + 4.85e3i)T^{2} \) |
| 23 | \( 1 - 39.4T + 1.21e4T^{2} \) |
| 29 | \( 1 + (-32.0 - 77.3i)T + (-1.72e4 + 1.72e4i)T^{2} \) |
| 31 | \( 1 + 56.9iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-219. + 91.0i)T + (3.58e4 - 3.58e4i)T^{2} \) |
| 41 | \( 1 + (299. - 299. i)T - 6.89e4iT^{2} \) |
| 43 | \( 1 + (-90.2 - 217. i)T + (-5.62e4 + 5.62e4i)T^{2} \) |
| 47 | \( 1 + (284. + 284. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (39.8 - 16.5i)T + (1.05e5 - 1.05e5i)T^{2} \) |
| 59 | \( 1 + (255. - 615. i)T + (-1.45e5 - 1.45e5i)T^{2} \) |
| 61 | \( 1 + (515. - 213. i)T + (1.60e5 - 1.60e5i)T^{2} \) |
| 67 | \( 1 + (-273. + 659. i)T + (-2.12e5 - 2.12e5i)T^{2} \) |
| 71 | \( 1 + (-738. + 738. i)T - 3.57e5iT^{2} \) |
| 73 | \( 1 + 674. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 38.9iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (543. - 1.31e3i)T + (-4.04e5 - 4.04e5i)T^{2} \) |
| 89 | \( 1 + (-81.7 + 81.7i)T - 7.04e5iT^{2} \) |
| 97 | \( 1 + (489. + 489. i)T + 9.12e5iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.32408513082062269966361542511, −11.40718459475792579602465819669, −10.99856252838674395825866907626, −9.831609721552611984047732108227, −7.59374521507428059745065340404, −6.58350973239325885944938628046, −6.01272121195551157711034090870, −4.98816939128067867189135805903, −3.20084764203953319236116531331, −1.35543302891567690395489620175,
1.26026379767860053488982056380, 3.75956802949831181340112829736, 4.91692727159437758918793026925, 5.73206067830902893250121856801, 6.42213739373983256787300838087, 8.180448407279085355066560405458, 9.872031171514459123747092998920, 10.64775508351047163992064934189, 11.59540662973474541664382121597, 12.49478592787251161077586305125