# Properties

 Label 2-15e2-5.4-c3-0-14 Degree $2$ Conductor $225$ Sign $-0.447 + 0.894i$ Analytic cond. $13.2754$ Root an. cond. $3.64354$ Motivic weight $3$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 − 3i·2-s − 4-s + 20i·7-s − 21i·8-s + 24·11-s − 74i·13-s + 60·14-s − 71·16-s − 54i·17-s + 124·19-s − 72i·22-s − 120i·23-s − 222·26-s − 20i·28-s − 78·29-s + ⋯
 L(s)  = 1 − 1.06i·2-s − 0.125·4-s + 1.07i·7-s − 0.928i·8-s + 0.657·11-s − 1.57i·13-s + 1.14·14-s − 1.10·16-s − 0.770i·17-s + 1.49·19-s − 0.697i·22-s − 1.08i·23-s − 1.67·26-s − 0.134i·28-s − 0.499·29-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$225$$    =    $$3^{2} \cdot 5^{2}$$ Sign: $-0.447 + 0.894i$ Analytic conductor: $$13.2754$$ Root analytic conductor: $$3.64354$$ Motivic weight: $$3$$ Rational: no Arithmetic: yes Character: $\chi_{225} (199, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 225,\ (\ :3/2),\ -0.447 + 0.894i)$$

## Particular Values

 $$L(2)$$ $$\approx$$ $$1.02110 - 1.65217i$$ $$L(\frac12)$$ $$\approx$$ $$1.02110 - 1.65217i$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1$$
5 $$1$$
good2 $$1 + 3iT - 8T^{2}$$
7 $$1 - 20iT - 343T^{2}$$
11 $$1 - 24T + 1.33e3T^{2}$$
13 $$1 + 74iT - 2.19e3T^{2}$$
17 $$1 + 54iT - 4.91e3T^{2}$$
19 $$1 - 124T + 6.85e3T^{2}$$
23 $$1 + 120iT - 1.21e4T^{2}$$
29 $$1 + 78T + 2.43e4T^{2}$$
31 $$1 - 200T + 2.97e4T^{2}$$
37 $$1 + 70iT - 5.06e4T^{2}$$
41 $$1 + 330T + 6.89e4T^{2}$$
43 $$1 + 92iT - 7.95e4T^{2}$$
47 $$1 - 24iT - 1.03e5T^{2}$$
53 $$1 - 450iT - 1.48e5T^{2}$$
59 $$1 - 24T + 2.05e5T^{2}$$
61 $$1 + 322T + 2.26e5T^{2}$$
67 $$1 + 196iT - 3.00e5T^{2}$$
71 $$1 - 288T + 3.57e5T^{2}$$
73 $$1 - 430iT - 3.89e5T^{2}$$
79 $$1 - 520T + 4.93e5T^{2}$$
83 $$1 - 156iT - 5.71e5T^{2}$$
89 $$1 - 1.02e3T + 7.04e5T^{2}$$
97 $$1 + 286iT - 9.12e5T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$