L(s) = 1 | + 4i·4-s + (−6.12 + 6.12i)7-s + (−18.3 − 18.3i)13-s − 16·16-s + 37i·19-s + (−24.4 − 24.4i)28-s + 13·31-s + (−48.9 + 48.9i)37-s + (42.8 + 42.8i)43-s − 26i·49-s + (73.4 − 73.4i)52-s + 47·61-s − 64i·64-s + (55.1 − 55.1i)67-s + (97.9 + 97.9i)73-s + ⋯ |
L(s) = 1 | + i·4-s + (−0.874 + 0.874i)7-s + (−1.41 − 1.41i)13-s − 16-s + 1.94i·19-s + (−0.874 − 0.874i)28-s + 0.419·31-s + (−1.32 + 1.32i)37-s + (0.996 + 0.996i)43-s − 0.530i·49-s + (1.41 − 1.41i)52-s + 0.770·61-s − i·64-s + (0.822 − 0.822i)67-s + (1.34 + 1.34i)73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.899 - 0.437i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.899 - 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.169959 + 0.737671i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.169959 + 0.737671i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 - 4iT^{2} \) |
| 7 | \( 1 + (6.12 - 6.12i)T - 49iT^{2} \) |
| 11 | \( 1 + 121T^{2} \) |
| 13 | \( 1 + (18.3 + 18.3i)T + 169iT^{2} \) |
| 17 | \( 1 - 289iT^{2} \) |
| 19 | \( 1 - 37iT - 361T^{2} \) |
| 23 | \( 1 + 529iT^{2} \) |
| 29 | \( 1 - 841T^{2} \) |
| 31 | \( 1 - 13T + 961T^{2} \) |
| 37 | \( 1 + (48.9 - 48.9i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 1.68e3T^{2} \) |
| 43 | \( 1 + (-42.8 - 42.8i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 - 2.20e3iT^{2} \) |
| 53 | \( 1 + 2.80e3iT^{2} \) |
| 59 | \( 1 - 3.48e3T^{2} \) |
| 61 | \( 1 - 47T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-55.1 + 55.1i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 5.04e3T^{2} \) |
| 73 | \( 1 + (-97.9 - 97.9i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 142iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 6.88e3iT^{2} \) |
| 89 | \( 1 - 7.92e3T^{2} \) |
| 97 | \( 1 + (67.3 - 67.3i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.44093331115906064977419655687, −11.87803151246391376590181245452, −10.33240942002039448740937336754, −9.548887567408869062186108031711, −8.337009814233681948363022096054, −7.62317130757821839450442928037, −6.33456026987217426011316657894, −5.15783637662782680491300358999, −3.53181649080284101719209177586, −2.57744017340251332822836556338,
0.38727563138447122473997950474, 2.33687282911949475481194264279, 4.18724580958307321321664442767, 5.22791570800650475067459139324, 6.78514664316896286720266661071, 7.07007966375889320715472572125, 9.056046401586444530865729495868, 9.640034547554890507402984280370, 10.55560915401318119300069626176, 11.45615145543575474832697941561