Properties

Label 2-15e2-5.2-c2-0-9
Degree $2$
Conductor $225$
Sign $-0.850 - 0.525i$
Analytic cond. $6.13080$
Root an. cond. $2.47604$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.73 − 2.73i)2-s + 11i·4-s + (19.1 − 19.1i)8-s − 61.0·16-s + (−21.9 − 21.9i)17-s − 22i·19-s + (−21.9 + 21.9i)23-s − 2·31-s + (90.3 + 90.3i)32-s + 120i·34-s + (−60.2 + 60.2i)38-s + 120·46-s + (−65.7 − 65.7i)47-s − 49i·49-s + (−43.8 + 43.8i)53-s + ⋯
L(s)  = 1  + (−1.36 − 1.36i)2-s + 2.75i·4-s + (2.39 − 2.39i)8-s − 3.81·16-s + (−1.28 − 1.28i)17-s − 1.15i·19-s + (−0.952 + 0.952i)23-s − 0.0645·31-s + (2.82 + 2.82i)32-s + 3.52i·34-s + (−1.58 + 1.58i)38-s + 2.60·46-s + (−1.39 − 1.39i)47-s − 0.999i·49-s + (−0.826 + 0.826i)53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.850 - 0.525i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.850 - 0.525i$
Analytic conductor: \(6.13080\)
Root analytic conductor: \(2.47604\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (82, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1),\ -0.850 - 0.525i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0755574 + 0.265973i\)
\(L(\frac12)\) \(\approx\) \(0.0755574 + 0.265973i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + (2.73 + 2.73i)T + 4iT^{2} \)
7 \( 1 + 49iT^{2} \)
11 \( 1 + 121T^{2} \)
13 \( 1 - 169iT^{2} \)
17 \( 1 + (21.9 + 21.9i)T + 289iT^{2} \)
19 \( 1 + 22iT - 361T^{2} \)
23 \( 1 + (21.9 - 21.9i)T - 529iT^{2} \)
29 \( 1 - 841T^{2} \)
31 \( 1 + 2T + 961T^{2} \)
37 \( 1 + 1.36e3iT^{2} \)
41 \( 1 + 1.68e3T^{2} \)
43 \( 1 - 1.84e3iT^{2} \)
47 \( 1 + (65.7 + 65.7i)T + 2.20e3iT^{2} \)
53 \( 1 + (43.8 - 43.8i)T - 2.80e3iT^{2} \)
59 \( 1 - 3.48e3T^{2} \)
61 \( 1 + 118T + 3.72e3T^{2} \)
67 \( 1 + 4.48e3iT^{2} \)
71 \( 1 + 5.04e3T^{2} \)
73 \( 1 - 5.32e3iT^{2} \)
79 \( 1 + 98iT - 6.24e3T^{2} \)
83 \( 1 + (-43.8 + 43.8i)T - 6.88e3iT^{2} \)
89 \( 1 - 7.92e3T^{2} \)
97 \( 1 + 9.40e3iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.41318578030887652232947769473, −10.48379050724398933041505168053, −9.476875658822184536598966549656, −8.905540783836899547859258364014, −7.78083339993714620212889445127, −6.83470359526966996698559614028, −4.61530659453028256684999096811, −3.19714912121795200649681853331, −1.99420629929663501466532435632, −0.22981660182098228922443903012, 1.74148456731391894367844642438, 4.49388909844363532316251117371, 5.97385339340510507933544251691, 6.53662066308075619474913943166, 7.85132226455557793632681036504, 8.423910199680404325616157462590, 9.439126538329183665826433573144, 10.34896071681261961078617710142, 11.08217044335563741153982608653, 12.64688811885727210081439554634

Graph of the $Z$-function along the critical line