L(s) = 1 | + (−2.44 − 2.44i)2-s + 7.99i·4-s + (−6.12 − 6.12i)7-s + (9.79 − 9.79i)8-s − 6·11-s + (−3.67 + 3.67i)13-s + 29.9i·14-s − 15.9·16-s + (17.1 + 17.1i)17-s + 23i·19-s + (14.6 + 14.6i)22-s + (−12.2 + 12.2i)23-s + 18·26-s + (48.9 − 48.9i)28-s − 6i·29-s + ⋯ |
L(s) = 1 | + (−1.22 − 1.22i)2-s + 1.99i·4-s + (−0.874 − 0.874i)7-s + (1.22 − 1.22i)8-s − 0.545·11-s + (−0.282 + 0.282i)13-s + 2.14i·14-s − 0.999·16-s + (1.00 + 1.00i)17-s + 1.21i·19-s + (0.668 + 0.668i)22-s + (−0.532 + 0.532i)23-s + 0.692·26-s + (1.74 − 1.74i)28-s − 0.206i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.397883 + 0.0916720i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.397883 + 0.0916720i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (2.44 + 2.44i)T + 4iT^{2} \) |
| 7 | \( 1 + (6.12 + 6.12i)T + 49iT^{2} \) |
| 11 | \( 1 + 6T + 121T^{2} \) |
| 13 | \( 1 + (3.67 - 3.67i)T - 169iT^{2} \) |
| 17 | \( 1 + (-17.1 - 17.1i)T + 289iT^{2} \) |
| 19 | \( 1 - 23iT - 361T^{2} \) |
| 23 | \( 1 + (12.2 - 12.2i)T - 529iT^{2} \) |
| 29 | \( 1 + 6iT - 841T^{2} \) |
| 31 | \( 1 - 25T + 961T^{2} \) |
| 37 | \( 1 + (-24.4 - 24.4i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 60T + 1.68e3T^{2} \) |
| 43 | \( 1 + (60.0 - 60.0i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-7.34 - 7.34i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (24.4 - 24.4i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 18iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 37T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-25.7 - 25.7i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 132T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-24.4 + 24.4i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 10iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-2.44 + 2.44i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 132iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (23.2 + 23.2i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.95080217091876383788188882245, −10.83363565353012034063279755313, −10.01192818797533133100536364712, −9.686119511052546663133007036293, −8.216763257625378124914596223649, −7.60121954922206006590605326142, −6.10296152920069319670427363293, −4.02695098136024601350851357510, −2.98303909394624615090210818392, −1.33275656866598676725437277993,
0.35755044013390453147128502600, 2.75857922997806676076361024757, 5.12807853554647832557193359186, 6.04219386293400109331606502674, 7.04346289059040179539233832858, 7.952023197328658135539066912349, 8.990150995689655074835520348480, 9.643761082990059142686505264525, 10.48794862713736806217072764540, 11.88312934232206017352618292328