L(s) = 1 | + (−2.17 + 1.25i)2-s + (1.19 + 1.25i)3-s + (2.16 − 3.74i)4-s + (−4.17 − 1.23i)6-s + (0.445 − 0.257i)7-s + 5.83i·8-s + (−0.160 + 2.99i)9-s + (1.66 + 2.87i)11-s + (7.27 − 1.74i)12-s + (1.14 + 0.660i)13-s + (−0.646 + 1.11i)14-s + (−3.01 − 5.22i)16-s + 3.32i·17-s + (−3.41 − 6.72i)18-s + 1.32·19-s + ⋯ |
L(s) = 1 | + (−1.53 + 0.888i)2-s + (0.687 + 0.725i)3-s + (1.08 − 1.87i)4-s + (−1.70 − 0.505i)6-s + (0.168 − 0.0971i)7-s + 2.06i·8-s + (−0.0534 + 0.998i)9-s + (0.500 + 0.867i)11-s + (2.10 − 0.503i)12-s + (0.317 + 0.183i)13-s + (−0.172 + 0.299i)14-s + (−0.753 − 1.30i)16-s + 0.805i·17-s + (−0.805 − 1.58i)18-s + 0.303·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.551 - 0.833i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.551 - 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.351815 + 0.654752i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.351815 + 0.654752i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.19 - 1.25i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (2.17 - 1.25i)T + (1 - 1.73i)T^{2} \) |
| 7 | \( 1 + (-0.445 + 0.257i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.66 - 2.87i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.14 - 0.660i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3.32iT - 17T^{2} \) |
| 19 | \( 1 - 1.32T + 19T^{2} \) |
| 23 | \( 1 + (3.57 + 2.06i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.693 + 1.20i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.36 - 7.56i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 0.292iT - 37T^{2} \) |
| 41 | \( 1 + (-5.67 + 9.82i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-8.96 + 5.17i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.21 + 2.43i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 5.02iT - 53T^{2} \) |
| 59 | \( 1 + (2.51 - 4.35i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.67 + 6.36i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.18 - 4.72i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8.99T + 71T^{2} \) |
| 73 | \( 1 - 6.05iT - 73T^{2} \) |
| 79 | \( 1 + (4.02 + 6.97i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.33 + 0.771i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 3T + 89T^{2} \) |
| 97 | \( 1 + (-10.6 + 6.12i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.47515486467872206818655866515, −10.94909120202510487410550012345, −10.31284878771040751335055391220, −9.385201676868890979143073732796, −8.751769741032712705264638958073, −7.82172125224434460852280240094, −6.93602322075311122737770532703, −5.61199802340024766492418490432, −4.05811075202487900426733149399, −1.90213756689177971949256658658,
1.01904915821286136086626410457, 2.45914750752995271755829095510, 3.61518848473022671311554222943, 6.14563106304669760985894017212, 7.50503882073280276853271340902, 8.088949764097681019029144080561, 9.136367527909812081463677652483, 9.609336069632407756861126154678, 11.04737368879577163051152661460, 11.61872241512772223894340806119