Properties

Label 2-15e2-3.2-c2-0-11
Degree $2$
Conductor $225$
Sign $-0.577 - 0.816i$
Analytic cond. $6.13080$
Root an. cond. $2.47604$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.64i·2-s − 3.00·4-s − 11.2·7-s − 2.64i·8-s + 4.24i·11-s − 11.2·13-s + 29.6i·14-s − 18.9·16-s − 10.5i·17-s − 20·19-s + 11.2·22-s − 5.29i·23-s + 29.6i·26-s + 33.6·28-s + 8.48i·29-s + ⋯
L(s)  = 1  − 1.32i·2-s − 0.750·4-s − 1.60·7-s − 0.330i·8-s + 0.385i·11-s − 0.863·13-s + 2.12i·14-s − 1.18·16-s − 0.622i·17-s − 1.05·19-s + 0.510·22-s − 0.230i·23-s + 1.14i·26-s + 1.20·28-s + 0.292i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.577 - 0.816i$
Analytic conductor: \(6.13080\)
Root analytic conductor: \(2.47604\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1),\ -0.577 - 0.816i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.223323 + 0.431426i\)
\(L(\frac12)\) \(\approx\) \(0.223323 + 0.431426i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 2.64iT - 4T^{2} \)
7 \( 1 + 11.2T + 49T^{2} \)
11 \( 1 - 4.24iT - 121T^{2} \)
13 \( 1 + 11.2T + 169T^{2} \)
17 \( 1 + 10.5iT - 289T^{2} \)
19 \( 1 + 20T + 361T^{2} \)
23 \( 1 + 5.29iT - 529T^{2} \)
29 \( 1 - 8.48iT - 841T^{2} \)
31 \( 1 - 26T + 961T^{2} \)
37 \( 1 - 33.6T + 1.36e3T^{2} \)
41 \( 1 + 55.1iT - 1.68e3T^{2} \)
43 \( 1 + 22.4T + 1.84e3T^{2} \)
47 \( 1 - 21.1iT - 2.20e3T^{2} \)
53 \( 1 + 84.6iT - 2.80e3T^{2} \)
59 \( 1 + 46.6iT - 3.48e3T^{2} \)
61 \( 1 + 22T + 3.72e3T^{2} \)
67 \( 1 + 89.7T + 4.48e3T^{2} \)
71 \( 1 + 50.9iT - 5.04e3T^{2} \)
73 \( 1 + 67.3T + 5.32e3T^{2} \)
79 \( 1 + 14T + 6.24e3T^{2} \)
83 \( 1 - 74.0iT - 6.88e3T^{2} \)
89 \( 1 + 89.0iT - 7.92e3T^{2} \)
97 \( 1 - 22.4T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.46150065451047357546551835835, −10.28090421406943348219491344936, −9.825876896065461019817823060099, −8.921580936540546459963415627598, −7.20265095047199058899465486400, −6.31398144062691241059449284850, −4.56740235815045195560222265329, −3.31355597429707771266312885729, −2.31901649433285768253414893739, −0.24345738659617943704166198109, 2.78912513467632958469077964012, 4.41480822564967980399111077866, 5.91993959767732348168681032740, 6.45185028100608453922774452074, 7.46360821760587602184042979171, 8.529595333213368713920655111300, 9.516883697897747469991945002153, 10.48209391659518944642022635586, 11.84655325262051825042345438681, 12.92465990528761777438178058831

Graph of the $Z$-function along the critical line