Properties

Label 2-15e2-3.2-c2-0-0
Degree $2$
Conductor $225$
Sign $0.577 - 0.816i$
Analytic cond. $6.13080$
Root an. cond. $2.47604$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.65i·2-s − 9.32·4-s − 7.16·7-s + 19.4i·8-s + 5.42i·11-s − 9.81·13-s + 26.1i·14-s + 33.6·16-s + 12.2i·17-s + 6.32·19-s + 19.8·22-s + 12.0i·23-s + 35.8i·26-s + 66.7·28-s − 44.9i·29-s + ⋯
L(s)  = 1  − 1.82i·2-s − 2.33·4-s − 1.02·7-s + 2.42i·8-s + 0.493i·11-s − 0.754·13-s + 1.86i·14-s + 2.10·16-s + 0.719i·17-s + 0.332·19-s + 0.900·22-s + 0.523i·23-s + 1.37i·26-s + 2.38·28-s − 1.55i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $0.577 - 0.816i$
Analytic conductor: \(6.13080\)
Root analytic conductor: \(2.47604\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1),\ 0.577 - 0.816i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0142348 + 0.00736849i\)
\(L(\frac12)\) \(\approx\) \(0.0142348 + 0.00736849i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 3.65iT - 4T^{2} \)
7 \( 1 + 7.16T + 49T^{2} \)
11 \( 1 - 5.42iT - 121T^{2} \)
13 \( 1 + 9.81T + 169T^{2} \)
17 \( 1 - 12.2iT - 289T^{2} \)
19 \( 1 - 6.32T + 361T^{2} \)
23 \( 1 - 12.0iT - 529T^{2} \)
29 \( 1 + 44.9iT - 841T^{2} \)
31 \( 1 + 58.2T + 961T^{2} \)
37 \( 1 + 66.4T + 1.36e3T^{2} \)
41 \( 1 - 16.4iT - 1.68e3T^{2} \)
43 \( 1 - 43.6T + 1.84e3T^{2} \)
47 \( 1 + 40.0iT - 2.20e3T^{2} \)
53 \( 1 + 13.2iT - 2.80e3T^{2} \)
59 \( 1 - 25.1iT - 3.48e3T^{2} \)
61 \( 1 + 35.6T + 3.72e3T^{2} \)
67 \( 1 + 26.7T + 4.48e3T^{2} \)
71 \( 1 - 92.7iT - 5.04e3T^{2} \)
73 \( 1 + 60.3T + 5.32e3T^{2} \)
79 \( 1 + 96.2T + 6.24e3T^{2} \)
83 \( 1 - 79.1iT - 6.88e3T^{2} \)
89 \( 1 + 107. iT - 7.92e3T^{2} \)
97 \( 1 - 1.07T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.19115001428675673009448748188, −11.25502202083724466382022973649, −10.17658442101766115202544473174, −9.699826623802990102228519336716, −8.763283673038257514687933381052, −7.27232540822787700322405689974, −5.60387729872354185378009938888, −4.21594390502300511314199825844, −3.20340038075304916193212809775, −1.92048620185143657733871544169, 0.008502606129613530832283298733, 3.39183471194962407818964197519, 4.90897585004143669745059241703, 5.82788408101423982083400941443, 6.90105336670096356492159986364, 7.49712896268192577298206420800, 8.866716114407008435009921133579, 9.379940296269984584579710992586, 10.61183876512752258441263325154, 12.30938130838271077698341916555

Graph of the $Z$-function along the critical line