L(s) = 1 | − 3.65i·2-s − 9.32·4-s − 7.16·7-s + 19.4i·8-s + 5.42i·11-s − 9.81·13-s + 26.1i·14-s + 33.6·16-s + 12.2i·17-s + 6.32·19-s + 19.8·22-s + 12.0i·23-s + 35.8i·26-s + 66.7·28-s − 44.9i·29-s + ⋯ |
L(s) = 1 | − 1.82i·2-s − 2.33·4-s − 1.02·7-s + 2.42i·8-s + 0.493i·11-s − 0.754·13-s + 1.86i·14-s + 2.10·16-s + 0.719i·17-s + 0.332·19-s + 0.900·22-s + 0.523i·23-s + 1.37i·26-s + 2.38·28-s − 1.55i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0142348 + 0.00736849i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0142348 + 0.00736849i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + 3.65iT - 4T^{2} \) |
| 7 | \( 1 + 7.16T + 49T^{2} \) |
| 11 | \( 1 - 5.42iT - 121T^{2} \) |
| 13 | \( 1 + 9.81T + 169T^{2} \) |
| 17 | \( 1 - 12.2iT - 289T^{2} \) |
| 19 | \( 1 - 6.32T + 361T^{2} \) |
| 23 | \( 1 - 12.0iT - 529T^{2} \) |
| 29 | \( 1 + 44.9iT - 841T^{2} \) |
| 31 | \( 1 + 58.2T + 961T^{2} \) |
| 37 | \( 1 + 66.4T + 1.36e3T^{2} \) |
| 41 | \( 1 - 16.4iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 43.6T + 1.84e3T^{2} \) |
| 47 | \( 1 + 40.0iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 13.2iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 25.1iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 35.6T + 3.72e3T^{2} \) |
| 67 | \( 1 + 26.7T + 4.48e3T^{2} \) |
| 71 | \( 1 - 92.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 60.3T + 5.32e3T^{2} \) |
| 79 | \( 1 + 96.2T + 6.24e3T^{2} \) |
| 83 | \( 1 - 79.1iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 107. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 1.07T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.19115001428675673009448748188, −11.25502202083724466382022973649, −10.17658442101766115202544473174, −9.699826623802990102228519336716, −8.763283673038257514687933381052, −7.27232540822787700322405689974, −5.60387729872354185378009938888, −4.21594390502300511314199825844, −3.20340038075304916193212809775, −1.92048620185143657733871544169,
0.008502606129613530832283298733, 3.39183471194962407818964197519, 4.90897585004143669745059241703, 5.82788408101423982083400941443, 6.90105336670096356492159986364, 7.49712896268192577298206420800, 8.866716114407008435009921133579, 9.379940296269984584579710992586, 10.61183876512752258441263325154, 12.30938130838271077698341916555