Properties

Label 2-15e2-25.21-c3-0-28
Degree $2$
Conductor $225$
Sign $0.874 + 0.485i$
Analytic cond. $13.2754$
Root an. cond. $3.64354$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.177 − 0.546i)2-s + (6.20 + 4.50i)4-s + (9.45 − 5.96i)5-s − 2.67·7-s + (7.28 − 5.29i)8-s + (−1.58 − 6.22i)10-s + (19.4 − 59.9i)11-s + (4.38 + 13.4i)13-s + (−0.475 + 1.46i)14-s + (17.3 + 53.4i)16-s + (24.5 − 17.8i)17-s + (−22.2 + 16.1i)19-s + (85.5 + 5.57i)20-s + (−29.3 − 21.2i)22-s + (−35.9 + 110. i)23-s + ⋯
L(s)  = 1  + (0.0627 − 0.193i)2-s + (0.775 + 0.563i)4-s + (0.845 − 0.533i)5-s − 0.144·7-s + (0.321 − 0.233i)8-s + (−0.0500 − 0.196i)10-s + (0.533 − 1.64i)11-s + (0.0934 + 0.287i)13-s + (−0.00907 + 0.0279i)14-s + (0.271 + 0.834i)16-s + (0.350 − 0.254i)17-s + (−0.268 + 0.195i)19-s + (0.956 + 0.0623i)20-s + (−0.283 − 0.206i)22-s + (−0.325 + 1.00i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.874 + 0.485i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.874 + 0.485i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $0.874 + 0.485i$
Analytic conductor: \(13.2754\)
Root analytic conductor: \(3.64354\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (46, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :3/2),\ 0.874 + 0.485i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.52730 - 0.654836i\)
\(L(\frac12)\) \(\approx\) \(2.52730 - 0.654836i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-9.45 + 5.96i)T \)
good2 \( 1 + (-0.177 + 0.546i)T + (-6.47 - 4.70i)T^{2} \)
7 \( 1 + 2.67T + 343T^{2} \)
11 \( 1 + (-19.4 + 59.9i)T + (-1.07e3 - 782. i)T^{2} \)
13 \( 1 + (-4.38 - 13.4i)T + (-1.77e3 + 1.29e3i)T^{2} \)
17 \( 1 + (-24.5 + 17.8i)T + (1.51e3 - 4.67e3i)T^{2} \)
19 \( 1 + (22.2 - 16.1i)T + (2.11e3 - 6.52e3i)T^{2} \)
23 \( 1 + (35.9 - 110. i)T + (-9.84e3 - 7.15e3i)T^{2} \)
29 \( 1 + (32.5 + 23.6i)T + (7.53e3 + 2.31e4i)T^{2} \)
31 \( 1 + (-180. + 130. i)T + (9.20e3 - 2.83e4i)T^{2} \)
37 \( 1 + (-25.6 - 78.8i)T + (-4.09e4 + 2.97e4i)T^{2} \)
41 \( 1 + (44.5 + 137. i)T + (-5.57e4 + 4.05e4i)T^{2} \)
43 \( 1 - 433.T + 7.95e4T^{2} \)
47 \( 1 + (-371. - 269. i)T + (3.20e4 + 9.87e4i)T^{2} \)
53 \( 1 + (200. + 145. i)T + (4.60e4 + 1.41e5i)T^{2} \)
59 \( 1 + (95.9 + 295. i)T + (-1.66e5 + 1.20e5i)T^{2} \)
61 \( 1 + (-0.644 + 1.98i)T + (-1.83e5 - 1.33e5i)T^{2} \)
67 \( 1 + (529. - 384. i)T + (9.29e4 - 2.86e5i)T^{2} \)
71 \( 1 + (734. + 533. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (271. - 835. i)T + (-3.14e5 - 2.28e5i)T^{2} \)
79 \( 1 + (-921. - 669. i)T + (1.52e5 + 4.68e5i)T^{2} \)
83 \( 1 + (798. - 579. i)T + (1.76e5 - 5.43e5i)T^{2} \)
89 \( 1 + (305. - 940. i)T + (-5.70e5 - 4.14e5i)T^{2} \)
97 \( 1 + (1.24e3 + 903. i)T + (2.82e5 + 8.68e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.68962028794559806784252740087, −10.94538505149182842878020267072, −9.770844239503679050756992180200, −8.775423422319367396391637627719, −7.80543119141726374006135437130, −6.41093945082876176548053428276, −5.72499124350208485540869868687, −3.98331338814158066898800113068, −2.72610661876107847855791528730, −1.23234719328615716301731952045, 1.58406772837284712867432854903, 2.69422626129935347788935221121, 4.61042323565496317725993357258, 5.91729795142868436442151583428, 6.68954454959922752623467270801, 7.53454735267595954448268493353, 9.168963309731528273613488516193, 10.16887202705296213244618485603, 10.60041112180449276882142036060, 11.90707484947077803661022476571

Graph of the $Z$-function along the critical line