L(s) = 1 | + (−0.856 + 2.63i)2-s + (0.254 + 0.184i)4-s + (−7.75 − 8.04i)5-s − 7.15·7-s + (−18.6 + 13.5i)8-s + (27.8 − 13.5i)10-s + (15.3 − 47.3i)11-s + (16.6 + 51.1i)13-s + (6.13 − 18.8i)14-s + (−18.9 − 58.3i)16-s + (−10.7 + 7.80i)17-s + (124. − 90.3i)19-s + (−0.486 − 3.47i)20-s + (111. + 81.1i)22-s + (66.4 − 204. i)23-s + ⋯ |
L(s) = 1 | + (−0.302 + 0.932i)2-s + (0.0317 + 0.0230i)4-s + (−0.694 − 0.719i)5-s − 0.386·7-s + (−0.824 + 0.598i)8-s + (0.881 − 0.428i)10-s + (0.421 − 1.29i)11-s + (0.354 + 1.09i)13-s + (0.117 − 0.360i)14-s + (−0.296 − 0.912i)16-s + (−0.153 + 0.111i)17-s + (1.50 − 1.09i)19-s + (−0.00543 − 0.0389i)20-s + (1.08 + 0.786i)22-s + (0.602 − 1.85i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0992i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.17713 - 0.0585579i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17713 - 0.0585579i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (7.75 + 8.04i)T \) |
good | 2 | \( 1 + (0.856 - 2.63i)T + (-6.47 - 4.70i)T^{2} \) |
| 7 | \( 1 + 7.15T + 343T^{2} \) |
| 11 | \( 1 + (-15.3 + 47.3i)T + (-1.07e3 - 782. i)T^{2} \) |
| 13 | \( 1 + (-16.6 - 51.1i)T + (-1.77e3 + 1.29e3i)T^{2} \) |
| 17 | \( 1 + (10.7 - 7.80i)T + (1.51e3 - 4.67e3i)T^{2} \) |
| 19 | \( 1 + (-124. + 90.3i)T + (2.11e3 - 6.52e3i)T^{2} \) |
| 23 | \( 1 + (-66.4 + 204. i)T + (-9.84e3 - 7.15e3i)T^{2} \) |
| 29 | \( 1 + (56.2 + 40.8i)T + (7.53e3 + 2.31e4i)T^{2} \) |
| 31 | \( 1 + (-122. + 89.1i)T + (9.20e3 - 2.83e4i)T^{2} \) |
| 37 | \( 1 + (92.0 + 283. i)T + (-4.09e4 + 2.97e4i)T^{2} \) |
| 41 | \( 1 + (-110. - 341. i)T + (-5.57e4 + 4.05e4i)T^{2} \) |
| 43 | \( 1 - 451.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-124. - 90.6i)T + (3.20e4 + 9.87e4i)T^{2} \) |
| 53 | \( 1 + (-39.5 - 28.7i)T + (4.60e4 + 1.41e5i)T^{2} \) |
| 59 | \( 1 + (9.36 + 28.8i)T + (-1.66e5 + 1.20e5i)T^{2} \) |
| 61 | \( 1 + (-175. + 539. i)T + (-1.83e5 - 1.33e5i)T^{2} \) |
| 67 | \( 1 + (557. - 404. i)T + (9.29e4 - 2.86e5i)T^{2} \) |
| 71 | \( 1 + (684. + 497. i)T + (1.10e5 + 3.40e5i)T^{2} \) |
| 73 | \( 1 + (110. - 339. i)T + (-3.14e5 - 2.28e5i)T^{2} \) |
| 79 | \( 1 + (158. + 115. i)T + (1.52e5 + 4.68e5i)T^{2} \) |
| 83 | \( 1 + (-580. + 421. i)T + (1.76e5 - 5.43e5i)T^{2} \) |
| 89 | \( 1 + (-371. + 1.14e3i)T + (-5.70e5 - 4.14e5i)T^{2} \) |
| 97 | \( 1 + (1.00e3 + 727. i)T + (2.82e5 + 8.68e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.63143333596692393635139378274, −11.14572102208062200562138196697, −9.199533708634069953638510545179, −8.827768197488056863878396612278, −7.76867584084116337367832562621, −6.76987726159489633621080704093, −5.85170546628543704688021792926, −4.43847740781161492768045930481, −3.00569272612202007273863800252, −0.60785052503721146309770686582,
1.27961670617556655951476233217, 2.92770545213649202831126764494, 3.75531277693555148599301484930, 5.60403648488081522809283611546, 6.93316800358164931348206113392, 7.71521058269666745752764026751, 9.293782837104292592268815902201, 10.05818509289369848487398654792, 10.79400923446614222789351353162, 11.86816421747461517645114489528