Properties

Label 2-15e2-25.16-c3-0-20
Degree $2$
Conductor $225$
Sign $-0.941 - 0.337i$
Analytic cond. $13.2754$
Root an. cond. $3.64354$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.87 − 2.81i)2-s + (4.62 + 14.2i)4-s + (−7.51 + 8.27i)5-s + 0.140·7-s + (10.3 − 31.7i)8-s + (52.4 − 10.9i)10-s + (38.3 + 27.8i)11-s + (−27.7 + 20.1i)13-s + (−0.544 − 0.395i)14-s + (−32.6 + 23.7i)16-s + (−5.10 + 15.7i)17-s + (28.1 − 86.5i)19-s + (−152. − 68.7i)20-s + (−70.1 − 215. i)22-s + (−130. − 94.9i)23-s + ⋯
L(s)  = 1  + (−1.37 − 0.996i)2-s + (0.578 + 1.78i)4-s + (−0.672 + 0.740i)5-s + 0.00758·7-s + (0.456 − 1.40i)8-s + (1.65 − 0.344i)10-s + (1.05 + 0.762i)11-s + (−0.592 + 0.430i)13-s + (−0.0104 − 0.00755i)14-s + (−0.510 + 0.371i)16-s + (−0.0728 + 0.224i)17-s + (0.339 − 1.04i)19-s + (−1.70 − 0.769i)20-s + (−0.679 − 2.09i)22-s + (−1.18 − 0.861i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.941 - 0.337i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.941 - 0.337i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.941 - 0.337i$
Analytic conductor: \(13.2754\)
Root analytic conductor: \(3.64354\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (91, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :3/2),\ -0.941 - 0.337i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.00332682 + 0.0191388i\)
\(L(\frac12)\) \(\approx\) \(0.00332682 + 0.0191388i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (7.51 - 8.27i)T \)
good2 \( 1 + (3.87 + 2.81i)T + (2.47 + 7.60i)T^{2} \)
7 \( 1 - 0.140T + 343T^{2} \)
11 \( 1 + (-38.3 - 27.8i)T + (411. + 1.26e3i)T^{2} \)
13 \( 1 + (27.7 - 20.1i)T + (678. - 2.08e3i)T^{2} \)
17 \( 1 + (5.10 - 15.7i)T + (-3.97e3 - 2.88e3i)T^{2} \)
19 \( 1 + (-28.1 + 86.5i)T + (-5.54e3 - 4.03e3i)T^{2} \)
23 \( 1 + (130. + 94.9i)T + (3.75e3 + 1.15e4i)T^{2} \)
29 \( 1 + (-3.81 - 11.7i)T + (-1.97e4 + 1.43e4i)T^{2} \)
31 \( 1 + (102. - 316. i)T + (-2.41e4 - 1.75e4i)T^{2} \)
37 \( 1 + (-227. + 165. i)T + (1.56e4 - 4.81e4i)T^{2} \)
41 \( 1 + (-101. + 73.8i)T + (2.12e4 - 6.55e4i)T^{2} \)
43 \( 1 + 529.T + 7.95e4T^{2} \)
47 \( 1 + (23.1 + 71.3i)T + (-8.39e4 + 6.10e4i)T^{2} \)
53 \( 1 + (-77.0 - 237. i)T + (-1.20e5 + 8.75e4i)T^{2} \)
59 \( 1 + (217. - 157. i)T + (6.34e4 - 1.95e5i)T^{2} \)
61 \( 1 + (299. + 217. i)T + (7.01e4 + 2.15e5i)T^{2} \)
67 \( 1 + (54.5 - 167. i)T + (-2.43e5 - 1.76e5i)T^{2} \)
71 \( 1 + (223. + 686. i)T + (-2.89e5 + 2.10e5i)T^{2} \)
73 \( 1 + (-1.97 - 1.43i)T + (1.20e5 + 3.69e5i)T^{2} \)
79 \( 1 + (-187. - 577. i)T + (-3.98e5 + 2.89e5i)T^{2} \)
83 \( 1 + (-392. + 1.20e3i)T + (-4.62e5 - 3.36e5i)T^{2} \)
89 \( 1 + (1.08e3 + 786. i)T + (2.17e5 + 6.70e5i)T^{2} \)
97 \( 1 + (442. + 1.36e3i)T + (-7.38e5 + 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.15177779426583436105437989233, −10.28270937552165089585024760370, −9.446225284777569646151796318336, −8.541529563100823331158052267463, −7.43339604902360118879892288468, −6.68081539539821263091498933743, −4.39099576639866814633975552676, −3.08499613041272746640955831001, −1.80156988442806237723715747345, −0.01374858260384652639103468902, 1.31860040635760425805962211242, 3.83739431546221899111396448780, 5.47651797854211137742150526382, 6.45223974494327831867028237429, 7.81903202439014698921619032648, 8.105549801411428617979824561461, 9.334030948457511595523195229176, 9.842787693415593142263770840755, 11.28987163385723749991885956453, 12.02532627120057523377350668669

Graph of the $Z$-function along the critical line