Properties

Label 2-15e2-225.121-c1-0-10
Degree $2$
Conductor $225$
Sign $0.399 - 0.916i$
Analytic cond. $1.79663$
Root an. cond. $1.34038$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.367 − 0.0781i)2-s + (0.776 + 1.54i)3-s + (−1.69 + 0.755i)4-s + (1.98 − 1.02i)5-s + (0.406 + 0.508i)6-s + (1.17 + 2.04i)7-s + (−1.17 + 0.852i)8-s + (−1.79 + 2.40i)9-s + (0.650 − 0.533i)10-s + (−0.366 + 0.0779i)11-s + (−2.48 − 2.04i)12-s + (−0.347 − 0.0738i)13-s + (0.593 + 0.659i)14-s + (3.13 + 2.27i)15-s + (2.12 − 2.35i)16-s + (3.45 − 2.51i)17-s + ⋯
L(s)  = 1  + (0.260 − 0.0552i)2-s + (0.448 + 0.893i)3-s + (−0.848 + 0.377i)4-s + (0.888 − 0.459i)5-s + (0.166 + 0.207i)6-s + (0.445 + 0.772i)7-s + (−0.415 + 0.301i)8-s + (−0.597 + 0.801i)9-s + (0.205 − 0.168i)10-s + (−0.110 + 0.0235i)11-s + (−0.718 − 0.589i)12-s + (−0.0963 − 0.0204i)13-s + (0.158 + 0.176i)14-s + (0.809 + 0.587i)15-s + (0.530 − 0.589i)16-s + (0.838 − 0.609i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.399 - 0.916i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.399 - 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $0.399 - 0.916i$
Analytic conductor: \(1.79663\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (121, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1/2),\ 0.399 - 0.916i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.25544 + 0.822189i\)
\(L(\frac12)\) \(\approx\) \(1.25544 + 0.822189i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.776 - 1.54i)T \)
5 \( 1 + (-1.98 + 1.02i)T \)
good2 \( 1 + (-0.367 + 0.0781i)T + (1.82 - 0.813i)T^{2} \)
7 \( 1 + (-1.17 - 2.04i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (0.366 - 0.0779i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (0.347 + 0.0738i)T + (11.8 + 5.28i)T^{2} \)
17 \( 1 + (-3.45 + 2.51i)T + (5.25 - 16.1i)T^{2} \)
19 \( 1 + (3.26 - 2.37i)T + (5.87 - 18.0i)T^{2} \)
23 \( 1 + (-3.07 - 3.41i)T + (-2.40 + 22.8i)T^{2} \)
29 \( 1 + (-0.0385 + 0.366i)T + (-28.3 - 6.02i)T^{2} \)
31 \( 1 + (0.614 + 5.84i)T + (-30.3 + 6.44i)T^{2} \)
37 \( 1 + (3.03 + 9.33i)T + (-29.9 + 21.7i)T^{2} \)
41 \( 1 + (-8.44 - 1.79i)T + (37.4 + 16.6i)T^{2} \)
43 \( 1 + (3.86 + 6.69i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-0.0700 + 0.666i)T + (-45.9 - 9.77i)T^{2} \)
53 \( 1 + (8.98 + 6.52i)T + (16.3 + 50.4i)T^{2} \)
59 \( 1 + (-11.3 - 2.41i)T + (53.8 + 23.9i)T^{2} \)
61 \( 1 + (6.33 - 1.34i)T + (55.7 - 24.8i)T^{2} \)
67 \( 1 + (-1.33 - 12.6i)T + (-65.5 + 13.9i)T^{2} \)
71 \( 1 + (1.67 + 1.21i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (-1.94 + 5.99i)T + (-59.0 - 42.9i)T^{2} \)
79 \( 1 + (1.24 - 11.8i)T + (-77.2 - 16.4i)T^{2} \)
83 \( 1 + (8.03 + 3.57i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 + (0.603 - 1.85i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (1.17 - 11.1i)T + (-94.8 - 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.60331101694851739267875479655, −11.53675163677798709131931569403, −10.20757772567257532461454967050, −9.362022777328834976979528719620, −8.783346783635612871033754157779, −7.82528183747506749220094618559, −5.64219445669042855996959148460, −5.13594582010813456197891310255, −3.89808190769867281275385364965, −2.44387237263487055907986965014, 1.36454003263006423730485127201, 3.12500712037267605403446513401, 4.70064648047029869004798101530, 5.99422385568064221417356980363, 6.88632166699436547564759107645, 8.121784079931805320388268547478, 9.068316402726762233065101316328, 10.11445360366521673127388308270, 10.97094419340377131748410911518, 12.54067076784943903131246965953

Graph of the $Z$-function along the critical line