L(s) = 1 | + (1.79 + 0.380i)2-s + (−1.49 + 0.871i)3-s + (1.23 + 0.551i)4-s + (−0.0204 + 2.23i)5-s + (−3.01 + 0.991i)6-s + (−2.15 + 3.73i)7-s + (−0.953 − 0.692i)8-s + (1.48 − 2.60i)9-s + (−0.888 + 3.99i)10-s + (0.885 + 0.188i)11-s + (−2.33 + 0.253i)12-s + (6.04 − 1.28i)13-s + (−5.29 + 5.87i)14-s + (−1.91 − 3.36i)15-s + (−3.26 − 3.62i)16-s + (4.65 + 3.38i)17-s + ⋯ |
L(s) = 1 | + (1.26 + 0.269i)2-s + (−0.864 + 0.503i)3-s + (0.619 + 0.275i)4-s + (−0.00914 + 0.999i)5-s + (−1.23 + 0.404i)6-s + (−0.816 + 1.41i)7-s + (−0.337 − 0.244i)8-s + (0.493 − 0.869i)9-s + (−0.280 + 1.26i)10-s + (0.266 + 0.0567i)11-s + (−0.674 + 0.0733i)12-s + (1.67 − 0.356i)13-s + (−1.41 + 1.57i)14-s + (−0.495 − 0.868i)15-s + (−0.815 − 0.905i)16-s + (1.12 + 0.819i)17-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(−0.190−0.981i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(−0.190−0.981i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
−0.190−0.981i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), −0.190−0.981i)
|
Particular Values
L(1) |
≈ |
1.01017+1.22454i |
L(21) |
≈ |
1.01017+1.22454i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.49−0.871i)T |
| 5 | 1+(0.0204−2.23i)T |
good | 2 | 1+(−1.79−0.380i)T+(1.82+0.813i)T2 |
| 7 | 1+(2.15−3.73i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−0.885−0.188i)T+(10.0+4.47i)T2 |
| 13 | 1+(−6.04+1.28i)T+(11.8−5.28i)T2 |
| 17 | 1+(−4.65−3.38i)T+(5.25+16.1i)T2 |
| 19 | 1+(2.14+1.56i)T+(5.87+18.0i)T2 |
| 23 | 1+(−2.35+2.61i)T+(−2.40−22.8i)T2 |
| 29 | 1+(−0.238−2.26i)T+(−28.3+6.02i)T2 |
| 31 | 1+(−0.244+2.32i)T+(−30.3−6.44i)T2 |
| 37 | 1+(0.704−2.16i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−5.91+1.25i)T+(37.4−16.6i)T2 |
| 43 | 1+(1.16−2.00i)T+(−21.5−37.2i)T2 |
| 47 | 1+(0.583+5.54i)T+(−45.9+9.77i)T2 |
| 53 | 1+(−3.50+2.54i)T+(16.3−50.4i)T2 |
| 59 | 1+(−12.8+2.73i)T+(53.8−23.9i)T2 |
| 61 | 1+(13.8+2.93i)T+(55.7+24.8i)T2 |
| 67 | 1+(0.796−7.57i)T+(−65.5−13.9i)T2 |
| 71 | 1+(4.21−3.05i)T+(21.9−67.5i)T2 |
| 73 | 1+(−0.0260−0.0802i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−0.0932−0.887i)T+(−77.2+16.4i)T2 |
| 83 | 1+(−0.951+0.423i)T+(55.5−61.6i)T2 |
| 89 | 1+(−1.84−5.68i)T+(−72.0+52.3i)T2 |
| 97 | 1+(−0.171−1.63i)T+(−94.8+20.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.56127473337965738570006098250, −11.76402643031997489085433231596, −10.84279480587660291069927958893, −9.807338170133371482101119654829, −8.700493213083455954035949567874, −6.71732257000589009935331769672, −6.07230780817438044834737312909, −5.53047307258736120499784711964, −3.92131867747127938409265032925, −3.07028475699534538771219895340,
1.11762946934577242663088876464, 3.60183300742592881802237602923, 4.44980498860464769320313272925, 5.65119696274948947437064096873, 6.45052000017065001860880743569, 7.69153775852712221401287296762, 9.109530667796306278230120802393, 10.43204185264518508502072828607, 11.38975138469424284724852361337, 12.19715894476490041318328562373