Properties

Label 2-15e2-225.106-c1-0-7
Degree 22
Conductor 225225
Sign 0.1900.981i-0.190 - 0.981i
Analytic cond. 1.796631.79663
Root an. cond. 1.340381.34038
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.79 + 0.380i)2-s + (−1.49 + 0.871i)3-s + (1.23 + 0.551i)4-s + (−0.0204 + 2.23i)5-s + (−3.01 + 0.991i)6-s + (−2.15 + 3.73i)7-s + (−0.953 − 0.692i)8-s + (1.48 − 2.60i)9-s + (−0.888 + 3.99i)10-s + (0.885 + 0.188i)11-s + (−2.33 + 0.253i)12-s + (6.04 − 1.28i)13-s + (−5.29 + 5.87i)14-s + (−1.91 − 3.36i)15-s + (−3.26 − 3.62i)16-s + (4.65 + 3.38i)17-s + ⋯
L(s)  = 1  + (1.26 + 0.269i)2-s + (−0.864 + 0.503i)3-s + (0.619 + 0.275i)4-s + (−0.00914 + 0.999i)5-s + (−1.23 + 0.404i)6-s + (−0.816 + 1.41i)7-s + (−0.337 − 0.244i)8-s + (0.493 − 0.869i)9-s + (−0.280 + 1.26i)10-s + (0.266 + 0.0567i)11-s + (−0.674 + 0.0733i)12-s + (1.67 − 0.356i)13-s + (−1.41 + 1.57i)14-s + (−0.495 − 0.868i)15-s + (−0.815 − 0.905i)16-s + (1.12 + 0.819i)17-s + ⋯

Functional equation

Λ(s)=(225s/2ΓC(s)L(s)=((0.1900.981i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.190 - 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(225s/2ΓC(s+1/2)L(s)=((0.1900.981i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.190 - 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 225225    =    32523^{2} \cdot 5^{2}
Sign: 0.1900.981i-0.190 - 0.981i
Analytic conductor: 1.796631.79663
Root analytic conductor: 1.340381.34038
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ225(106,)\chi_{225} (106, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 225, ( :1/2), 0.1900.981i)(2,\ 225,\ (\ :1/2),\ -0.190 - 0.981i)

Particular Values

L(1)L(1) \approx 1.01017+1.22454i1.01017 + 1.22454i
L(12)L(\frac12) \approx 1.01017+1.22454i1.01017 + 1.22454i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.490.871i)T 1 + (1.49 - 0.871i)T
5 1+(0.02042.23i)T 1 + (0.0204 - 2.23i)T
good2 1+(1.790.380i)T+(1.82+0.813i)T2 1 + (-1.79 - 0.380i)T + (1.82 + 0.813i)T^{2}
7 1+(2.153.73i)T+(3.56.06i)T2 1 + (2.15 - 3.73i)T + (-3.5 - 6.06i)T^{2}
11 1+(0.8850.188i)T+(10.0+4.47i)T2 1 + (-0.885 - 0.188i)T + (10.0 + 4.47i)T^{2}
13 1+(6.04+1.28i)T+(11.85.28i)T2 1 + (-6.04 + 1.28i)T + (11.8 - 5.28i)T^{2}
17 1+(4.653.38i)T+(5.25+16.1i)T2 1 + (-4.65 - 3.38i)T + (5.25 + 16.1i)T^{2}
19 1+(2.14+1.56i)T+(5.87+18.0i)T2 1 + (2.14 + 1.56i)T + (5.87 + 18.0i)T^{2}
23 1+(2.35+2.61i)T+(2.4022.8i)T2 1 + (-2.35 + 2.61i)T + (-2.40 - 22.8i)T^{2}
29 1+(0.2382.26i)T+(28.3+6.02i)T2 1 + (-0.238 - 2.26i)T + (-28.3 + 6.02i)T^{2}
31 1+(0.244+2.32i)T+(30.36.44i)T2 1 + (-0.244 + 2.32i)T + (-30.3 - 6.44i)T^{2}
37 1+(0.7042.16i)T+(29.921.7i)T2 1 + (0.704 - 2.16i)T + (-29.9 - 21.7i)T^{2}
41 1+(5.91+1.25i)T+(37.416.6i)T2 1 + (-5.91 + 1.25i)T + (37.4 - 16.6i)T^{2}
43 1+(1.162.00i)T+(21.537.2i)T2 1 + (1.16 - 2.00i)T + (-21.5 - 37.2i)T^{2}
47 1+(0.583+5.54i)T+(45.9+9.77i)T2 1 + (0.583 + 5.54i)T + (-45.9 + 9.77i)T^{2}
53 1+(3.50+2.54i)T+(16.350.4i)T2 1 + (-3.50 + 2.54i)T + (16.3 - 50.4i)T^{2}
59 1+(12.8+2.73i)T+(53.823.9i)T2 1 + (-12.8 + 2.73i)T + (53.8 - 23.9i)T^{2}
61 1+(13.8+2.93i)T+(55.7+24.8i)T2 1 + (13.8 + 2.93i)T + (55.7 + 24.8i)T^{2}
67 1+(0.7967.57i)T+(65.513.9i)T2 1 + (0.796 - 7.57i)T + (-65.5 - 13.9i)T^{2}
71 1+(4.213.05i)T+(21.967.5i)T2 1 + (4.21 - 3.05i)T + (21.9 - 67.5i)T^{2}
73 1+(0.02600.0802i)T+(59.0+42.9i)T2 1 + (-0.0260 - 0.0802i)T + (-59.0 + 42.9i)T^{2}
79 1+(0.09320.887i)T+(77.2+16.4i)T2 1 + (-0.0932 - 0.887i)T + (-77.2 + 16.4i)T^{2}
83 1+(0.951+0.423i)T+(55.561.6i)T2 1 + (-0.951 + 0.423i)T + (55.5 - 61.6i)T^{2}
89 1+(1.845.68i)T+(72.0+52.3i)T2 1 + (-1.84 - 5.68i)T + (-72.0 + 52.3i)T^{2}
97 1+(0.1711.63i)T+(94.8+20.1i)T2 1 + (-0.171 - 1.63i)T + (-94.8 + 20.1i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.56127473337965738570006098250, −11.76402643031997489085433231596, −10.84279480587660291069927958893, −9.807338170133371482101119654829, −8.700493213083455954035949567874, −6.71732257000589009935331769672, −6.07230780817438044834737312909, −5.53047307258736120499784711964, −3.92131867747127938409265032925, −3.07028475699534538771219895340, 1.11762946934577242663088876464, 3.60183300742592881802237602923, 4.44980498860464769320313272925, 5.65119696274948947437064096873, 6.45052000017065001860880743569, 7.69153775852712221401287296762, 9.109530667796306278230120802393, 10.43204185264518508502072828607, 11.38975138469424284724852361337, 12.19715894476490041318328562373

Graph of the ZZ-function along the critical line