L(s) = 1 | + (−0.745 − 0.158i)2-s + (1.13 − 1.30i)3-s + (−1.29 − 0.576i)4-s + (−1.26 − 1.84i)5-s + (−1.05 + 0.793i)6-s + (−0.476 + 0.825i)7-s + (2.10 + 1.53i)8-s + (−0.409 − 2.97i)9-s + (0.650 + 1.57i)10-s + (−2.83 − 0.601i)11-s + (−2.22 + 1.03i)12-s + (−1.91 + 0.406i)13-s + (0.486 − 0.540i)14-s + (−3.84 − 0.449i)15-s + (0.567 + 0.630i)16-s + (−5.51 − 4.01i)17-s + ⋯ |
L(s) = 1 | + (−0.527 − 0.112i)2-s + (0.657 − 0.753i)3-s + (−0.647 − 0.288i)4-s + (−0.565 − 0.824i)5-s + (−0.431 + 0.323i)6-s + (−0.180 + 0.312i)7-s + (0.745 + 0.541i)8-s + (−0.136 − 0.990i)9-s + (0.205 + 0.498i)10-s + (−0.853 − 0.181i)11-s + (−0.643 + 0.298i)12-s + (−0.530 + 0.112i)13-s + (0.130 − 0.144i)14-s + (−0.993 − 0.116i)15-s + (0.141 + 0.157i)16-s + (−1.33 − 0.972i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.880 + 0.473i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.880 + 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.160026 - 0.635300i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.160026 - 0.635300i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.13 + 1.30i)T \) |
| 5 | \( 1 + (1.26 + 1.84i)T \) |
good | 2 | \( 1 + (0.745 + 0.158i)T + (1.82 + 0.813i)T^{2} \) |
| 7 | \( 1 + (0.476 - 0.825i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.83 + 0.601i)T + (10.0 + 4.47i)T^{2} \) |
| 13 | \( 1 + (1.91 - 0.406i)T + (11.8 - 5.28i)T^{2} \) |
| 17 | \( 1 + (5.51 + 4.01i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-3.77 - 2.74i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-5.89 + 6.54i)T + (-2.40 - 22.8i)T^{2} \) |
| 29 | \( 1 + (0.0975 + 0.928i)T + (-28.3 + 6.02i)T^{2} \) |
| 31 | \( 1 + (-0.277 + 2.64i)T + (-30.3 - 6.44i)T^{2} \) |
| 37 | \( 1 + (-0.799 + 2.46i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-5.30 + 1.12i)T + (37.4 - 16.6i)T^{2} \) |
| 43 | \( 1 + (-4.43 + 7.68i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.419 - 3.99i)T + (-45.9 + 9.77i)T^{2} \) |
| 53 | \( 1 + (-4.30 + 3.12i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (4.69 - 0.997i)T + (53.8 - 23.9i)T^{2} \) |
| 61 | \( 1 + (-10.9 - 2.33i)T + (55.7 + 24.8i)T^{2} \) |
| 67 | \( 1 + (0.387 - 3.68i)T + (-65.5 - 13.9i)T^{2} \) |
| 71 | \( 1 + (0.125 - 0.0911i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (3.09 + 9.53i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (0.442 + 4.20i)T + (-77.2 + 16.4i)T^{2} \) |
| 83 | \( 1 + (3.01 - 1.34i)T + (55.5 - 61.6i)T^{2} \) |
| 89 | \( 1 + (-5.32 - 16.3i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-0.203 - 1.93i)T + (-94.8 + 20.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.01155487731149944145004287074, −10.83050794779124010974024526142, −9.425124444192361685372980955751, −8.937778046438936715161841679092, −8.052292577505762042985797977938, −7.17851166249489890994395311894, −5.47982708702887759089406558216, −4.34342394276904028147488471374, −2.51563127147468921151787056141, −0.60824170508875731731205220293,
2.86527859395438933830824810601, 3.97855418065213926592295379950, 5.04695200678430101787393261032, 7.10057029693469666370191608582, 7.77764016253405570664529625420, 8.782711687410716372317984966431, 9.695589290431775679572548868852, 10.51480411632969863068955754749, 11.29856167518124727904464625385, 12.95587017068184048734590971316