Properties

Label 2-15e2-225.106-c1-0-2
Degree $2$
Conductor $225$
Sign $-0.466 - 0.884i$
Analytic cond. $1.79663$
Root an. cond. $1.34038$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.24 − 0.477i)2-s + (1.49 + 0.870i)3-s + (3.00 + 1.33i)4-s + (−2.07 − 0.827i)5-s + (−2.95 − 2.67i)6-s + (−1.62 + 2.80i)7-s + (−2.39 − 1.73i)8-s + (1.48 + 2.60i)9-s + (4.27 + 2.85i)10-s + (−1.90 − 0.405i)11-s + (3.33 + 4.61i)12-s + (−3.48 + 0.740i)13-s + (4.98 − 5.53i)14-s + (−2.39 − 3.04i)15-s + (0.148 + 0.164i)16-s + (0.726 + 0.527i)17-s + ⋯
L(s)  = 1  + (−1.59 − 0.337i)2-s + (0.864 + 0.502i)3-s + (1.50 + 0.668i)4-s + (−0.929 − 0.369i)5-s + (−1.20 − 1.09i)6-s + (−0.612 + 1.06i)7-s + (−0.845 − 0.613i)8-s + (0.494 + 0.869i)9-s + (1.35 + 0.902i)10-s + (−0.575 − 0.122i)11-s + (0.961 + 1.33i)12-s + (−0.966 + 0.205i)13-s + (1.33 − 1.47i)14-s + (−0.617 − 0.786i)15-s + (0.0370 + 0.0411i)16-s + (0.176 + 0.128i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.466 - 0.884i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.466 - 0.884i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $-0.466 - 0.884i$
Analytic conductor: \(1.79663\)
Root analytic conductor: \(1.34038\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{225} (106, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :1/2),\ -0.466 - 0.884i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.196058 + 0.325183i\)
\(L(\frac12)\) \(\approx\) \(0.196058 + 0.325183i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-1.49 - 0.870i)T \)
5 \( 1 + (2.07 + 0.827i)T \)
good2 \( 1 + (2.24 + 0.477i)T + (1.82 + 0.813i)T^{2} \)
7 \( 1 + (1.62 - 2.80i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (1.90 + 0.405i)T + (10.0 + 4.47i)T^{2} \)
13 \( 1 + (3.48 - 0.740i)T + (11.8 - 5.28i)T^{2} \)
17 \( 1 + (-0.726 - 0.527i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (-0.733 - 0.532i)T + (5.87 + 18.0i)T^{2} \)
23 \( 1 + (5.68 - 6.31i)T + (-2.40 - 22.8i)T^{2} \)
29 \( 1 + (-0.780 - 7.42i)T + (-28.3 + 6.02i)T^{2} \)
31 \( 1 + (-0.809 + 7.70i)T + (-30.3 - 6.44i)T^{2} \)
37 \( 1 + (1.33 - 4.10i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (4.43 - 0.943i)T + (37.4 - 16.6i)T^{2} \)
43 \( 1 + (0.885 - 1.53i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (0.808 + 7.69i)T + (-45.9 + 9.77i)T^{2} \)
53 \( 1 + (-5.94 + 4.31i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (-13.5 + 2.87i)T + (53.8 - 23.9i)T^{2} \)
61 \( 1 + (-6.17 - 1.31i)T + (55.7 + 24.8i)T^{2} \)
67 \( 1 + (-1.26 + 12.0i)T + (-65.5 - 13.9i)T^{2} \)
71 \( 1 + (8.02 - 5.83i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (-0.246 - 0.759i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (-0.0254 - 0.242i)T + (-77.2 + 16.4i)T^{2} \)
83 \( 1 + (-4.22 + 1.88i)T + (55.5 - 61.6i)T^{2} \)
89 \( 1 + (-2.11 - 6.50i)T + (-72.0 + 52.3i)T^{2} \)
97 \( 1 + (-0.495 - 4.71i)T + (-94.8 + 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.16328107637937297317860969241, −11.46518742571345238276598471505, −10.14901730706534716356117845711, −9.597281450958221586157698890316, −8.690435523138988228834028842760, −8.050103526135836527659116530089, −7.18840966839949204056474886386, −5.17646480234428367347796546549, −3.44871082715197262175548498498, −2.20692622128677742406819784154, 0.44967044999245410217582355835, 2.58317960592341204329215513174, 4.09857137162714868859324286947, 6.61036181405363466764514557436, 7.30378920647229239616879426955, 7.895711527400149778122948746591, 8.745991943104045191189210648171, 10.13170406775132600824571991514, 10.26306625825520263410398503047, 11.79533586018619534936776294927

Graph of the $Z$-function along the critical line