L(s) = 1 | + (−2.40 − 0.511i)2-s + (1.05 + 1.37i)3-s + (3.70 + 1.65i)4-s + (1.50 + 1.65i)5-s + (−1.83 − 3.84i)6-s + (2.55 − 4.43i)7-s + (−4.09 − 2.97i)8-s + (−0.777 + 2.89i)9-s + (−2.77 − 4.75i)10-s + (1.54 + 0.329i)11-s + (1.63 + 6.83i)12-s + (−0.872 + 0.185i)13-s + (−8.42 + 9.36i)14-s + (−0.690 + 3.81i)15-s + (2.91 + 3.23i)16-s + (−3.04 − 2.21i)17-s + ⋯ |
L(s) = 1 | + (−1.70 − 0.361i)2-s + (0.608 + 0.793i)3-s + (1.85 + 0.825i)4-s + (0.672 + 0.740i)5-s + (−0.748 − 1.57i)6-s + (0.967 − 1.67i)7-s + (−1.44 − 1.05i)8-s + (−0.259 + 0.965i)9-s + (−0.876 − 1.50i)10-s + (0.466 + 0.0992i)11-s + (0.473 + 1.97i)12-s + (−0.242 + 0.0514i)13-s + (−2.25 + 2.50i)14-s + (−0.178 + 0.983i)15-s + (0.727 + 0.808i)16-s + (−0.737 − 0.536i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.933 - 0.359i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.933 - 0.359i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.825647 + 0.153531i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.825647 + 0.153531i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.05 - 1.37i)T \) |
| 5 | \( 1 + (-1.50 - 1.65i)T \) |
good | 2 | \( 1 + (2.40 + 0.511i)T + (1.82 + 0.813i)T^{2} \) |
| 7 | \( 1 + (-2.55 + 4.43i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.54 - 0.329i)T + (10.0 + 4.47i)T^{2} \) |
| 13 | \( 1 + (0.872 - 0.185i)T + (11.8 - 5.28i)T^{2} \) |
| 17 | \( 1 + (3.04 + 2.21i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-3.69 - 2.68i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (-3.66 + 4.07i)T + (-2.40 - 22.8i)T^{2} \) |
| 29 | \( 1 + (-0.00441 - 0.0419i)T + (-28.3 + 6.02i)T^{2} \) |
| 31 | \( 1 + (0.205 - 1.95i)T + (-30.3 - 6.44i)T^{2} \) |
| 37 | \( 1 + (1.43 - 4.43i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.748 - 0.159i)T + (37.4 - 16.6i)T^{2} \) |
| 43 | \( 1 + (4.11 - 7.13i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.426 + 4.05i)T + (-45.9 + 9.77i)T^{2} \) |
| 53 | \( 1 + (2.00 - 1.45i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (9.31 - 1.98i)T + (53.8 - 23.9i)T^{2} \) |
| 61 | \( 1 + (-7.08 - 1.50i)T + (55.7 + 24.8i)T^{2} \) |
| 67 | \( 1 + (0.375 - 3.57i)T + (-65.5 - 13.9i)T^{2} \) |
| 71 | \( 1 + (1.57 - 1.14i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (4.42 + 13.6i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (0.355 + 3.38i)T + (-77.2 + 16.4i)T^{2} \) |
| 83 | \( 1 + (3.54 - 1.57i)T + (55.5 - 61.6i)T^{2} \) |
| 89 | \( 1 + (0.935 + 2.87i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (-0.544 - 5.17i)T + (-94.8 + 20.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.52851520566800500125771564099, −10.86994037575764044255648398830, −10.22672453887119856266120925526, −9.605569752688581490782767560110, −8.558000792074767281761421331754, −7.56068971497328818437153077471, −6.85918210142016646607617591172, −4.67380285893843287411502785903, −3.11414980830254753453123270089, −1.61126849747766464269248337475,
1.45712282725750327559973617840, 2.37217661953907695930828195974, 5.34686444023841095777841413617, 6.37292084620221025815815464336, 7.57853291507278386895704485353, 8.554915561012391435116815991467, 8.974780941399707605815746443260, 9.592490272223338024301417054256, 11.22125316480446657979088666724, 11.95811606008138670655453164085