Properties

Label 2-15e2-1.1-c7-0-19
Degree $2$
Conductor $225$
Sign $1$
Analytic cond. $70.2866$
Root an. cond. $8.38371$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.7·2-s − 12.0·4-s + 420.·7-s − 1.50e3·8-s + 6.82e3·11-s − 1.01e4·13-s + 4.52e3·14-s − 1.47e4·16-s + 1.56e4·17-s − 6.86e3·19-s + 7.35e4·22-s − 2.92e4·23-s − 1.09e5·26-s − 5.04e3·28-s + 2.55e4·29-s + 8.21e4·31-s + 3.46e4·32-s + 1.68e5·34-s + 2.23e5·37-s − 7.38e4·38-s + 5.33e5·41-s + 7.08e5·43-s − 8.19e4·44-s − 3.14e5·46-s + 5.82e3·47-s − 6.47e5·49-s + 1.21e5·52-s + ⋯
L(s)  = 1  + 0.951·2-s − 0.0937·4-s + 0.462·7-s − 1.04·8-s + 1.54·11-s − 1.28·13-s + 0.440·14-s − 0.897·16-s + 0.774·17-s − 0.229·19-s + 1.47·22-s − 0.500·23-s − 1.21·26-s − 0.0433·28-s + 0.194·29-s + 0.495·31-s + 0.186·32-s + 0.736·34-s + 0.725·37-s − 0.218·38-s + 1.20·41-s + 1.35·43-s − 0.145·44-s − 0.476·46-s + 0.00818·47-s − 0.785·49-s + 0.120·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(70.2866\)
Root analytic conductor: \(8.38371\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(3.237151933\)
\(L(\frac12)\) \(\approx\) \(3.237151933\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 10.7T + 128T^{2} \)
7 \( 1 - 420.T + 8.23e5T^{2} \)
11 \( 1 - 6.82e3T + 1.94e7T^{2} \)
13 \( 1 + 1.01e4T + 6.27e7T^{2} \)
17 \( 1 - 1.56e4T + 4.10e8T^{2} \)
19 \( 1 + 6.86e3T + 8.93e8T^{2} \)
23 \( 1 + 2.92e4T + 3.40e9T^{2} \)
29 \( 1 - 2.55e4T + 1.72e10T^{2} \)
31 \( 1 - 8.21e4T + 2.75e10T^{2} \)
37 \( 1 - 2.23e5T + 9.49e10T^{2} \)
41 \( 1 - 5.33e5T + 1.94e11T^{2} \)
43 \( 1 - 7.08e5T + 2.71e11T^{2} \)
47 \( 1 - 5.82e3T + 5.06e11T^{2} \)
53 \( 1 - 5.89e5T + 1.17e12T^{2} \)
59 \( 1 - 1.43e6T + 2.48e12T^{2} \)
61 \( 1 - 1.38e6T + 3.14e12T^{2} \)
67 \( 1 - 2.71e6T + 6.06e12T^{2} \)
71 \( 1 - 4.81e5T + 9.09e12T^{2} \)
73 \( 1 - 1.48e6T + 1.10e13T^{2} \)
79 \( 1 - 1.05e6T + 1.92e13T^{2} \)
83 \( 1 - 2.60e6T + 2.71e13T^{2} \)
89 \( 1 - 5.64e6T + 4.42e13T^{2} \)
97 \( 1 + 1.20e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.37898612035935731739709917058, −9.881275197971010634773984026963, −9.148966003804422565215370496406, −7.948342240086720147068115288917, −6.69490019097783677365783032328, −5.66023618262263528385180933101, −4.59285907259561457301410990251, −3.79931019734209690930737676314, −2.42659148864675242832620016584, −0.829842706369900636527501485858, 0.829842706369900636527501485858, 2.42659148864675242832620016584, 3.79931019734209690930737676314, 4.59285907259561457301410990251, 5.66023618262263528385180933101, 6.69490019097783677365783032328, 7.948342240086720147068115288917, 9.148966003804422565215370496406, 9.881275197971010634773984026963, 11.37898612035935731739709917058

Graph of the $Z$-function along the critical line