Properties

Label 2-15e2-1.1-c7-0-18
Degree $2$
Conductor $225$
Sign $1$
Analytic cond. $70.2866$
Root an. cond. $8.38371$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 15.1·2-s + 101.·4-s + 198.·7-s + 407.·8-s + 5.26e3·11-s + 1.21e3·13-s − 3.01e3·14-s − 1.91e4·16-s + 3.45e4·17-s + 1.86e4·19-s − 7.97e4·22-s + 3.33e4·23-s − 1.83e4·26-s + 2.01e4·28-s + 1.78e5·29-s − 2.37e5·31-s + 2.37e5·32-s − 5.23e5·34-s + 4.82e5·37-s − 2.81e5·38-s − 2.93e5·41-s + 4.43e5·43-s + 5.32e5·44-s − 5.04e5·46-s + 4.81e4·47-s − 7.83e5·49-s + 1.22e5·52-s + ⋯
L(s)  = 1  − 1.33·2-s + 0.789·4-s + 0.219·7-s + 0.281·8-s + 1.19·11-s + 0.153·13-s − 0.293·14-s − 1.16·16-s + 1.70·17-s + 0.622·19-s − 1.59·22-s + 0.571·23-s − 0.204·26-s + 0.173·28-s + 1.35·29-s − 1.43·31-s + 1.27·32-s − 2.28·34-s + 1.56·37-s − 0.832·38-s − 0.665·41-s + 0.850·43-s + 0.942·44-s − 0.763·46-s + 0.0676·47-s − 0.951·49-s + 0.120·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(225\)    =    \(3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(70.2866\)
Root analytic conductor: \(8.38371\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 225,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.302434325\)
\(L(\frac12)\) \(\approx\) \(1.302434325\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 + 15.1T + 128T^{2} \)
7 \( 1 - 198.T + 8.23e5T^{2} \)
11 \( 1 - 5.26e3T + 1.94e7T^{2} \)
13 \( 1 - 1.21e3T + 6.27e7T^{2} \)
17 \( 1 - 3.45e4T + 4.10e8T^{2} \)
19 \( 1 - 1.86e4T + 8.93e8T^{2} \)
23 \( 1 - 3.33e4T + 3.40e9T^{2} \)
29 \( 1 - 1.78e5T + 1.72e10T^{2} \)
31 \( 1 + 2.37e5T + 2.75e10T^{2} \)
37 \( 1 - 4.82e5T + 9.49e10T^{2} \)
41 \( 1 + 2.93e5T + 1.94e11T^{2} \)
43 \( 1 - 4.43e5T + 2.71e11T^{2} \)
47 \( 1 - 4.81e4T + 5.06e11T^{2} \)
53 \( 1 + 1.66e6T + 1.17e12T^{2} \)
59 \( 1 + 1.75e6T + 2.48e12T^{2} \)
61 \( 1 + 3.15e6T + 3.14e12T^{2} \)
67 \( 1 - 2.29e6T + 6.06e12T^{2} \)
71 \( 1 - 2.71e6T + 9.09e12T^{2} \)
73 \( 1 + 2.67e6T + 1.10e13T^{2} \)
79 \( 1 - 3.44e6T + 1.92e13T^{2} \)
83 \( 1 + 1.71e6T + 2.71e13T^{2} \)
89 \( 1 + 3.52e6T + 4.42e13T^{2} \)
97 \( 1 - 1.44e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79367423634741923074872192688, −9.726576668269865085186100977771, −9.183252855968205428904619130704, −8.094394556964716276239572043940, −7.34766378989276015983529444762, −6.16254006637822431023759158177, −4.71595784580111757360105760745, −3.28017547966459986873970273884, −1.55609807045255323780158099939, −0.812976919322838014316298995138, 0.812976919322838014316298995138, 1.55609807045255323780158099939, 3.28017547966459986873970273884, 4.71595784580111757360105760745, 6.16254006637822431023759158177, 7.34766378989276015983529444762, 8.094394556964716276239572043940, 9.183252855968205428904619130704, 9.726576668269865085186100977771, 10.79367423634741923074872192688

Graph of the $Z$-function along the critical line