Properties

Label 2-1587-1.1-c1-0-80
Degree $2$
Conductor $1587$
Sign $-1$
Analytic cond. $12.6722$
Root an. cond. $3.55981$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 6-s + 2·7-s − 3·8-s + 9-s − 4·11-s − 12-s − 6·13-s + 2·14-s − 16-s − 4·17-s + 18-s − 2·19-s + 2·21-s − 4·22-s − 3·24-s − 5·25-s − 6·26-s + 27-s − 2·28-s + 2·29-s + 4·31-s + 5·32-s − 4·33-s − 4·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.408·6-s + 0.755·7-s − 1.06·8-s + 1/3·9-s − 1.20·11-s − 0.288·12-s − 1.66·13-s + 0.534·14-s − 1/4·16-s − 0.970·17-s + 0.235·18-s − 0.458·19-s + 0.436·21-s − 0.852·22-s − 0.612·24-s − 25-s − 1.17·26-s + 0.192·27-s − 0.377·28-s + 0.371·29-s + 0.718·31-s + 0.883·32-s − 0.696·33-s − 0.685·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1587 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1587 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1587\)    =    \(3 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(12.6722\)
Root analytic conductor: \(3.55981\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1587,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
23 \( 1 \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.912115883457701282549736658807, −8.211605142746493961460634249227, −7.57852957473500430748876570413, −6.55154894173086314444633827884, −5.34423672570445956439168284893, −4.82108321928925973573258671004, −4.12133946477945840123408046984, −2.86791479523701443173120189217, −2.13959716896567237142416295040, 0, 2.13959716896567237142416295040, 2.86791479523701443173120189217, 4.12133946477945840123408046984, 4.82108321928925973573258671004, 5.34423672570445956439168284893, 6.55154894173086314444633827884, 7.57852957473500430748876570413, 8.211605142746493961460634249227, 8.912115883457701282549736658807

Graph of the $Z$-function along the critical line