L(s) = 1 | − 3·5-s + 3.31i·11-s − 3.31i·23-s + 4·25-s − 9.94i·31-s + 7·37-s − 6.63i·47-s − 7·49-s − 6·53-s − 9.94i·55-s − 3.31i·59-s − 9.94i·67-s − 16.5i·71-s + 9·89-s − 17·97-s + ⋯ |
L(s) = 1 | − 1.34·5-s + 1.00i·11-s − 0.691i·23-s + 0.800·25-s − 1.78i·31-s + 1.15·37-s − 0.967i·47-s − 49-s − 0.824·53-s − 1.34i·55-s − 0.431i·59-s − 1.21i·67-s − 1.96i·71-s + 0.953·89-s − 1.72·97-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7612397610\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7612397610\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 - 3.31iT \) |
good | 5 | \( 1 + 3T + 5T^{2} \) |
| 7 | \( 1 + 7T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + 3.31iT - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + 9.94iT - 31T^{2} \) |
| 37 | \( 1 - 7T + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + 43T^{2} \) |
| 47 | \( 1 + 6.63iT - 47T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 + 3.31iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 9.94iT - 67T^{2} \) |
| 71 | \( 1 + 16.5iT - 71T^{2} \) |
| 73 | \( 1 - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 9T + 89T^{2} \) |
| 97 | \( 1 + 17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.268837417625597732973522039058, −8.158487958521229707799719767839, −7.76427541762664832793694490961, −6.95320088838568664856591127885, −6.06369749379060009767879803291, −4.77413391941721413371555392182, −4.24757181404877892307860964303, −3.28772959447658657385014592230, −2.05847254630549191612834740248, −0.34302960194193152541892960370,
1.12974241868404701799265172265, 2.89569895439985644400896794507, 3.63200033997258241259008051521, 4.50280814318955923080287379462, 5.48711054168476884362949155134, 6.47058745551317505987186758689, 7.35385081331080536077665418146, 8.065230724546502233192443461282, 8.636712062768920253185706800042, 9.527298031399968695009072617038