Properties

Label 2-1584-33.32-c1-0-9
Degree $2$
Conductor $1584$
Sign $0.997 + 0.0659i$
Analytic cond. $12.6483$
Root an. cond. $3.55644$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·5-s − 2.44i·7-s + (1.73 + 2.82i)11-s + 4.89i·13-s + 7.34i·19-s − 2.82i·23-s + 2.99·25-s + 6.92·29-s + 4·31-s − 3.46·35-s + 8·37-s − 6.92·41-s − 2.44i·43-s − 2.82i·47-s + 1.00·49-s + ⋯
L(s)  = 1  − 0.632i·5-s − 0.925i·7-s + (0.522 + 0.852i)11-s + 1.35i·13-s + 1.68i·19-s − 0.589i·23-s + 0.599·25-s + 1.28·29-s + 0.718·31-s − 0.585·35-s + 1.31·37-s − 1.08·41-s − 0.373i·43-s − 0.412i·47-s + 0.142·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0659i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0659i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $0.997 + 0.0659i$
Analytic conductor: \(12.6483\)
Root analytic conductor: \(3.55644\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1584} (593, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :1/2),\ 0.997 + 0.0659i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.782793259\)
\(L(\frac12)\) \(\approx\) \(1.782793259\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (-1.73 - 2.82i)T \)
good5 \( 1 + 1.41iT - 5T^{2} \)
7 \( 1 + 2.44iT - 7T^{2} \)
13 \( 1 - 4.89iT - 13T^{2} \)
17 \( 1 + 17T^{2} \)
19 \( 1 - 7.34iT - 19T^{2} \)
23 \( 1 + 2.82iT - 23T^{2} \)
29 \( 1 - 6.92T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 - 8T + 37T^{2} \)
41 \( 1 + 6.92T + 41T^{2} \)
43 \( 1 + 2.44iT - 43T^{2} \)
47 \( 1 + 2.82iT - 47T^{2} \)
53 \( 1 + 9.89iT - 53T^{2} \)
59 \( 1 + 11.3iT - 59T^{2} \)
61 \( 1 + 4.89iT - 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 + 2.82iT - 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 - 12.2iT - 79T^{2} \)
83 \( 1 - 13.8T + 83T^{2} \)
89 \( 1 - 7.07iT - 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.560533097538488635099731721504, −8.537794703256386964712700446764, −7.938764869339594152019472464919, −6.80309582067324016651017445986, −6.47832881978869266217410491339, −5.05286034888185456824213993074, −4.36737209730871194374599747372, −3.69012820238815085858315008773, −2.08099096636915018248600525359, −1.05757970338854818350780474448, 0.913581797576034709342425983506, 2.80867855613214972286391302053, 2.95326940179145000830286524812, 4.46013737402614262524647188469, 5.44814185830142154316644482154, 6.16828252102104571580763859557, 6.92450313982511848113281293585, 7.924870628634696348207911677879, 8.680463449611245591391335995649, 9.296981774932015322939652783521

Graph of the $Z$-function along the critical line