L(s) = 1 | + 5-s − 8.48i·7-s + (7 − 8.48i)11-s − 8.48i·13-s + 25.4i·17-s − 25.4i·19-s + 17·23-s − 24·25-s − 33.9i·29-s − 17·31-s − 8.48i·35-s + 47·37-s + 8.48i·41-s + 16.9i·43-s − 58·47-s + ⋯ |
L(s) = 1 | + 0.200·5-s − 1.21i·7-s + (0.636 − 0.771i)11-s − 0.652i·13-s + 1.49i·17-s − 1.33i·19-s + 0.739·23-s − 0.959·25-s − 1.17i·29-s − 0.548·31-s − 0.242i·35-s + 1.27·37-s + 0.206i·41-s + 0.394i·43-s − 1.23·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.636 + 0.771i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.636 + 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.553983853\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.553983853\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-7 + 8.48i)T \) |
good | 5 | \( 1 - T + 25T^{2} \) |
| 7 | \( 1 + 8.48iT - 49T^{2} \) |
| 13 | \( 1 + 8.48iT - 169T^{2} \) |
| 17 | \( 1 - 25.4iT - 289T^{2} \) |
| 19 | \( 1 + 25.4iT - 361T^{2} \) |
| 23 | \( 1 - 17T + 529T^{2} \) |
| 29 | \( 1 + 33.9iT - 841T^{2} \) |
| 31 | \( 1 + 17T + 961T^{2} \) |
| 37 | \( 1 - 47T + 1.36e3T^{2} \) |
| 41 | \( 1 - 8.48iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 16.9iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 58T + 2.20e3T^{2} \) |
| 53 | \( 1 + 2T + 2.80e3T^{2} \) |
| 59 | \( 1 + 55T + 3.48e3T^{2} \) |
| 61 | \( 1 - 84.8iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 89T + 4.48e3T^{2} \) |
| 71 | \( 1 + 7T + 5.04e3T^{2} \) |
| 73 | \( 1 + 127. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 33.9iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 33.9iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 97T + 7.92e3T^{2} \) |
| 97 | \( 1 + 121T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.978027349168034711418324654403, −8.065477311587006708875125347062, −7.43311318541093660427539067961, −6.41782059763667302291466270197, −5.87173948811580016281734015905, −4.60515471660113915267289532421, −3.88241226712961191506486061725, −2.94088610624630429210073661786, −1.47826905041380451011269717049, −0.42436822419199694024768643839,
1.50309730887763496279945380039, 2.39674050681395693351786583564, 3.50088627889398548661735381241, 4.64642489588882339956048831671, 5.41766456323386761354853572508, 6.26249986534499155951676437060, 7.08468498246878391366359560734, 7.916733558048458798108569768720, 9.012176318511809295921605741880, 9.348354552170993143748238506561