Properties

Label 2-1584-11.10-c2-0-39
Degree $2$
Conductor $1584$
Sign $0.997 + 0.0749i$
Analytic cond. $43.1608$
Root an. cond. $6.56969$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.04·5-s − 2.85i·7-s + (10.9 + 0.824i)11-s + 21.7i·13-s − 11.6i·17-s − 36.8i·19-s − 1.09·23-s + 24.6·25-s + 44.1i·29-s + 56.1·31-s − 20.1i·35-s + 36.6·37-s − 38.1i·41-s + 43.5i·43-s − 47.4·47-s + ⋯
L(s)  = 1  + 1.40·5-s − 0.407i·7-s + (0.997 + 0.0749i)11-s + 1.67i·13-s − 0.683i·17-s − 1.93i·19-s − 0.0477·23-s + 0.985·25-s + 1.52i·29-s + 1.81·31-s − 0.574i·35-s + 0.989·37-s − 0.930i·41-s + 1.01i·43-s − 1.00·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0749i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.997 + 0.0749i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $0.997 + 0.0749i$
Analytic conductor: \(43.1608\)
Root analytic conductor: \(6.56969\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1584} (1297, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :1),\ 0.997 + 0.0749i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.979548560\)
\(L(\frac12)\) \(\approx\) \(2.979548560\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (-10.9 - 0.824i)T \)
good5 \( 1 - 7.04T + 25T^{2} \)
7 \( 1 + 2.85iT - 49T^{2} \)
13 \( 1 - 21.7iT - 169T^{2} \)
17 \( 1 + 11.6iT - 289T^{2} \)
19 \( 1 + 36.8iT - 361T^{2} \)
23 \( 1 + 1.09T + 529T^{2} \)
29 \( 1 - 44.1iT - 841T^{2} \)
31 \( 1 - 56.1T + 961T^{2} \)
37 \( 1 - 36.6T + 1.36e3T^{2} \)
41 \( 1 + 38.1iT - 1.68e3T^{2} \)
43 \( 1 - 43.5iT - 1.84e3T^{2} \)
47 \( 1 + 47.4T + 2.20e3T^{2} \)
53 \( 1 + 51.2T + 2.80e3T^{2} \)
59 \( 1 + 2.67T + 3.48e3T^{2} \)
61 \( 1 - 50.1iT - 3.72e3T^{2} \)
67 \( 1 + 48.0T + 4.48e3T^{2} \)
71 \( 1 - 18.7T + 5.04e3T^{2} \)
73 \( 1 + 60.9iT - 5.32e3T^{2} \)
79 \( 1 + 98.1iT - 6.24e3T^{2} \)
83 \( 1 + 89.7iT - 6.88e3T^{2} \)
89 \( 1 - 114.T + 7.92e3T^{2} \)
97 \( 1 - 60.5T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.162786860827647195249932958417, −8.904094843291032085261271785907, −7.37490683965740468904246289628, −6.61843907452858769319905374773, −6.27130243184523818392656107993, −4.92018324485638888007900309200, −4.43395370026170305553091809940, −3.00661508161147160011623512520, −2.00630006228020943484602750045, −1.02843121320113245125744795722, 1.05176782586386371060789345363, 2.05065314223867612105577131850, 3.08026687979565611017531940005, 4.17566150625918876780763646960, 5.42037760964640084638645111231, 6.04244554461863212711533991740, 6.40434234029069140194276024269, 7.961028174462281357138799533314, 8.298579909591077689078446440746, 9.490429875799277626982506644535

Graph of the $Z$-function along the critical line