Properties

Label 2-1584-11.10-c2-0-35
Degree $2$
Conductor $1584$
Sign $1$
Analytic cond. $43.1608$
Root an. cond. $6.56969$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.11·5-s − 11·11-s + 8.35·23-s + 40.8·25-s + 24.5·31-s + 72.8·37-s + 50·47-s + 49·49-s + 70·53-s − 89.2·55-s − 96.5·59-s + 129.·67-s + 23.4·71-s − 177.·89-s − 193.·97-s + 190·103-s + 47.1·113-s + 67.7·115-s + ⋯
L(s)  = 1  + 1.62·5-s − 11-s + 0.363·23-s + 1.63·25-s + 0.793·31-s + 1.96·37-s + 1.06·47-s + 0.999·49-s + 1.32·53-s − 1.62·55-s − 1.63·59-s + 1.93·67-s + 0.329·71-s − 1.99·89-s − 1.99·97-s + 1.84·103-s + 0.417·113-s + 0.589·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(43.1608\)
Root analytic conductor: \(6.56969\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1584} (1297, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.736581120\)
\(L(\frac12)\) \(\approx\) \(2.736581120\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + 11T \)
good5 \( 1 - 8.11T + 25T^{2} \)
7 \( 1 - 49T^{2} \)
13 \( 1 - 169T^{2} \)
17 \( 1 - 289T^{2} \)
19 \( 1 - 361T^{2} \)
23 \( 1 - 8.35T + 529T^{2} \)
29 \( 1 - 841T^{2} \)
31 \( 1 - 24.5T + 961T^{2} \)
37 \( 1 - 72.8T + 1.36e3T^{2} \)
41 \( 1 - 1.68e3T^{2} \)
43 \( 1 - 1.84e3T^{2} \)
47 \( 1 - 50T + 2.20e3T^{2} \)
53 \( 1 - 70T + 2.80e3T^{2} \)
59 \( 1 + 96.5T + 3.48e3T^{2} \)
61 \( 1 - 3.72e3T^{2} \)
67 \( 1 - 129.T + 4.48e3T^{2} \)
71 \( 1 - 23.4T + 5.04e3T^{2} \)
73 \( 1 - 5.32e3T^{2} \)
79 \( 1 - 6.24e3T^{2} \)
83 \( 1 - 6.88e3T^{2} \)
89 \( 1 + 177.T + 7.92e3T^{2} \)
97 \( 1 + 193.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.379925407138494022336187500733, −8.546743388893875586090151511044, −7.63546658731444965585532985166, −6.68666641823714000335451223329, −5.85791914706453227652528984263, −5.32961407865246960548285954206, −4.33545581512937863458919565480, −2.83711206751063116636007782584, −2.23426977340438872556270924408, −0.954778021733146979436581372230, 0.954778021733146979436581372230, 2.23426977340438872556270924408, 2.83711206751063116636007782584, 4.33545581512937863458919565480, 5.32961407865246960548285954206, 5.85791914706453227652528984263, 6.68666641823714000335451223329, 7.63546658731444965585532985166, 8.546743388893875586090151511044, 9.379925407138494022336187500733

Graph of the $Z$-function along the critical line