Properties

Label 2-1584-11.10-c2-0-19
Degree $2$
Conductor $1584$
Sign $0.818 - 0.573i$
Analytic cond. $43.1608$
Root an. cond. $6.56969$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.84·5-s − 3.78i·7-s + (−9.00 + 6.31i)11-s − 19.1i·13-s + 25.7i·17-s + 10.1i·19-s + 30.5·23-s − 21.6·25-s − 18.8i·29-s − 52.3·31-s + 6.96i·35-s + 56.3·37-s − 13.1i·41-s + 76.2i·43-s − 41.2·47-s + ⋯
L(s)  = 1  − 0.368·5-s − 0.540i·7-s + (−0.818 + 0.573i)11-s − 1.47i·13-s + 1.51i·17-s + 0.533i·19-s + 1.32·23-s − 0.864·25-s − 0.648i·29-s − 1.68·31-s + 0.199i·35-s + 1.52·37-s − 0.320i·41-s + 1.77i·43-s − 0.878·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.818 - 0.573i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.818 - 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $0.818 - 0.573i$
Analytic conductor: \(43.1608\)
Root analytic conductor: \(6.56969\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1584} (1297, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :1),\ 0.818 - 0.573i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.420905799\)
\(L(\frac12)\) \(\approx\) \(1.420905799\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (9.00 - 6.31i)T \)
good5 \( 1 + 1.84T + 25T^{2} \)
7 \( 1 + 3.78iT - 49T^{2} \)
13 \( 1 + 19.1iT - 169T^{2} \)
17 \( 1 - 25.7iT - 289T^{2} \)
19 \( 1 - 10.1iT - 361T^{2} \)
23 \( 1 - 30.5T + 529T^{2} \)
29 \( 1 + 18.8iT - 841T^{2} \)
31 \( 1 + 52.3T + 961T^{2} \)
37 \( 1 - 56.3T + 1.36e3T^{2} \)
41 \( 1 + 13.1iT - 1.68e3T^{2} \)
43 \( 1 - 76.2iT - 1.84e3T^{2} \)
47 \( 1 + 41.2T + 2.20e3T^{2} \)
53 \( 1 - 102.T + 2.80e3T^{2} \)
59 \( 1 - 68.0T + 3.48e3T^{2} \)
61 \( 1 + 54.9iT - 3.72e3T^{2} \)
67 \( 1 + 15.1T + 4.48e3T^{2} \)
71 \( 1 - 81.6T + 5.04e3T^{2} \)
73 \( 1 + 110. iT - 5.32e3T^{2} \)
79 \( 1 - 101. iT - 6.24e3T^{2} \)
83 \( 1 - 145. iT - 6.88e3T^{2} \)
89 \( 1 + 75.2T + 7.92e3T^{2} \)
97 \( 1 - 51.7T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.430534599816371491916135176903, −8.140760812398677835682813748423, −7.920621189350692703140968477377, −7.06517747085893050766681470156, −5.94392018067899939347403296511, −5.26367189820884576637678086285, −4.16105090749950061883327025764, −3.41029688814083549656508222704, −2.23145844206869137066378954330, −0.838715155009292343685593328635, 0.51861557292620957322786169561, 2.12286151645510695561603191075, 3.00897936605509359084472571353, 4.11350664602985011511429931628, 5.09807727283429827716176559448, 5.72969624824221055408698388317, 7.06847470569184532699259453698, 7.27859493948876834789187453309, 8.594737560928228113898031303930, 9.029510171986147850183063998336

Graph of the $Z$-function along the critical line