L(s) = 1 | − 1.84·5-s − 3.78i·7-s + (−9.00 + 6.31i)11-s − 19.1i·13-s + 25.7i·17-s + 10.1i·19-s + 30.5·23-s − 21.6·25-s − 18.8i·29-s − 52.3·31-s + 6.96i·35-s + 56.3·37-s − 13.1i·41-s + 76.2i·43-s − 41.2·47-s + ⋯ |
L(s) = 1 | − 0.368·5-s − 0.540i·7-s + (−0.818 + 0.573i)11-s − 1.47i·13-s + 1.51i·17-s + 0.533i·19-s + 1.32·23-s − 0.864·25-s − 0.648i·29-s − 1.68·31-s + 0.199i·35-s + 1.52·37-s − 0.320i·41-s + 1.77i·43-s − 0.878·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.818 - 0.573i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.818 - 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.420905799\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.420905799\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (9.00 - 6.31i)T \) |
good | 5 | \( 1 + 1.84T + 25T^{2} \) |
| 7 | \( 1 + 3.78iT - 49T^{2} \) |
| 13 | \( 1 + 19.1iT - 169T^{2} \) |
| 17 | \( 1 - 25.7iT - 289T^{2} \) |
| 19 | \( 1 - 10.1iT - 361T^{2} \) |
| 23 | \( 1 - 30.5T + 529T^{2} \) |
| 29 | \( 1 + 18.8iT - 841T^{2} \) |
| 31 | \( 1 + 52.3T + 961T^{2} \) |
| 37 | \( 1 - 56.3T + 1.36e3T^{2} \) |
| 41 | \( 1 + 13.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 76.2iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 41.2T + 2.20e3T^{2} \) |
| 53 | \( 1 - 102.T + 2.80e3T^{2} \) |
| 59 | \( 1 - 68.0T + 3.48e3T^{2} \) |
| 61 | \( 1 + 54.9iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 15.1T + 4.48e3T^{2} \) |
| 71 | \( 1 - 81.6T + 5.04e3T^{2} \) |
| 73 | \( 1 + 110. iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 101. iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 145. iT - 6.88e3T^{2} \) |
| 89 | \( 1 + 75.2T + 7.92e3T^{2} \) |
| 97 | \( 1 - 51.7T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.430534599816371491916135176903, −8.140760812398677835682813748423, −7.920621189350692703140968477377, −7.06517747085893050766681470156, −5.94392018067899939347403296511, −5.26367189820884576637678086285, −4.16105090749950061883327025764, −3.41029688814083549656508222704, −2.23145844206869137066378954330, −0.838715155009292343685593328635,
0.51861557292620957322786169561, 2.12286151645510695561603191075, 3.00897936605509359084472571353, 4.11350664602985011511429931628, 5.09807727283429827716176559448, 5.72969624824221055408698388317, 7.06847470569184532699259453698, 7.27859493948876834789187453309, 8.594737560928228113898031303930, 9.029510171986147850183063998336