L(s) = 1 | − 2.38·5-s − 10.1i·7-s + (−6.00 + 9.21i)11-s + 1.76i·13-s + 6.88i·17-s − 5.12i·19-s − 14.1·23-s − 19.3·25-s + 17.1i·29-s + 37.8·31-s + 24.0i·35-s − 33.8·37-s + 11.5i·41-s + 1.30i·43-s + 73.8·47-s + ⋯ |
L(s) = 1 | − 0.476·5-s − 1.44i·7-s + (−0.546 + 0.837i)11-s + 0.135i·13-s + 0.405i·17-s − 0.269i·19-s − 0.616·23-s − 0.772·25-s + 0.592i·29-s + 1.21·31-s + 0.688i·35-s − 0.913·37-s + 0.281i·41-s + 0.0304i·43-s + 1.57·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.546 - 0.837i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.546 - 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.141565497\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.141565497\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (6.00 - 9.21i)T \) |
good | 5 | \( 1 + 2.38T + 25T^{2} \) |
| 7 | \( 1 + 10.1iT - 49T^{2} \) |
| 13 | \( 1 - 1.76iT - 169T^{2} \) |
| 17 | \( 1 - 6.88iT - 289T^{2} \) |
| 19 | \( 1 + 5.12iT - 361T^{2} \) |
| 23 | \( 1 + 14.1T + 529T^{2} \) |
| 29 | \( 1 - 17.1iT - 841T^{2} \) |
| 31 | \( 1 - 37.8T + 961T^{2} \) |
| 37 | \( 1 + 33.8T + 1.36e3T^{2} \) |
| 41 | \( 1 - 11.5iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 1.30iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 73.8T + 2.20e3T^{2} \) |
| 53 | \( 1 - 2.81T + 2.80e3T^{2} \) |
| 59 | \( 1 + 30.6T + 3.48e3T^{2} \) |
| 61 | \( 1 - 76.1iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 70.4T + 4.48e3T^{2} \) |
| 71 | \( 1 - 102.T + 5.04e3T^{2} \) |
| 73 | \( 1 - 64.4iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 128. iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 47.4iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 157.T + 7.92e3T^{2} \) |
| 97 | \( 1 + 36.1T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.480985593494070976236144430932, −8.394740735262426407676586691588, −7.64342433960702557153999390884, −7.14835472460161225806369588841, −6.26680989131155112453479001975, −5.04221841042236510021741184115, −4.24647534777548406482242313825, −3.59289166905011724094144072880, −2.23505338065096218617413407034, −0.919108122850998432788298763328,
0.38240089707180249777230067190, 2.09832598015774105126453034500, 2.94882573278538782479222227239, 3.95506255058069625274292863753, 5.15268256536386696828578239152, 5.76568353126030698914574910047, 6.54566114411849847714266783726, 7.80578146165243441230099037594, 8.243519967251289945513642921165, 9.020409257316093623179069517334