Properties

Label 2-1584-11.10-c2-0-13
Degree $2$
Conductor $1584$
Sign $0.546 - 0.837i$
Analytic cond. $43.1608$
Root an. cond. $6.56969$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.38·5-s − 10.1i·7-s + (−6.00 + 9.21i)11-s + 1.76i·13-s + 6.88i·17-s − 5.12i·19-s − 14.1·23-s − 19.3·25-s + 17.1i·29-s + 37.8·31-s + 24.0i·35-s − 33.8·37-s + 11.5i·41-s + 1.30i·43-s + 73.8·47-s + ⋯
L(s)  = 1  − 0.476·5-s − 1.44i·7-s + (−0.546 + 0.837i)11-s + 0.135i·13-s + 0.405i·17-s − 0.269i·19-s − 0.616·23-s − 0.772·25-s + 0.592i·29-s + 1.21·31-s + 0.688i·35-s − 0.913·37-s + 0.281i·41-s + 0.0304i·43-s + 1.57·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.546 - 0.837i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.546 - 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $0.546 - 0.837i$
Analytic conductor: \(43.1608\)
Root analytic conductor: \(6.56969\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1584} (1297, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :1),\ 0.546 - 0.837i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.141565497\)
\(L(\frac12)\) \(\approx\) \(1.141565497\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (6.00 - 9.21i)T \)
good5 \( 1 + 2.38T + 25T^{2} \)
7 \( 1 + 10.1iT - 49T^{2} \)
13 \( 1 - 1.76iT - 169T^{2} \)
17 \( 1 - 6.88iT - 289T^{2} \)
19 \( 1 + 5.12iT - 361T^{2} \)
23 \( 1 + 14.1T + 529T^{2} \)
29 \( 1 - 17.1iT - 841T^{2} \)
31 \( 1 - 37.8T + 961T^{2} \)
37 \( 1 + 33.8T + 1.36e3T^{2} \)
41 \( 1 - 11.5iT - 1.68e3T^{2} \)
43 \( 1 - 1.30iT - 1.84e3T^{2} \)
47 \( 1 - 73.8T + 2.20e3T^{2} \)
53 \( 1 - 2.81T + 2.80e3T^{2} \)
59 \( 1 + 30.6T + 3.48e3T^{2} \)
61 \( 1 - 76.1iT - 3.72e3T^{2} \)
67 \( 1 - 70.4T + 4.48e3T^{2} \)
71 \( 1 - 102.T + 5.04e3T^{2} \)
73 \( 1 - 64.4iT - 5.32e3T^{2} \)
79 \( 1 + 128. iT - 6.24e3T^{2} \)
83 \( 1 - 47.4iT - 6.88e3T^{2} \)
89 \( 1 - 157.T + 7.92e3T^{2} \)
97 \( 1 + 36.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.480985593494070976236144430932, −8.394740735262426407676586691588, −7.64342433960702557153999390884, −7.14835472460161225806369588841, −6.26680989131155112453479001975, −5.04221841042236510021741184115, −4.24647534777548406482242313825, −3.59289166905011724094144072880, −2.23505338065096218617413407034, −0.919108122850998432788298763328, 0.38240089707180249777230067190, 2.09832598015774105126453034500, 2.94882573278538782479222227239, 3.95506255058069625274292863753, 5.15268256536386696828578239152, 5.76568353126030698914574910047, 6.54566114411849847714266783726, 7.80578146165243441230099037594, 8.243519967251289945513642921165, 9.020409257316093623179069517334

Graph of the $Z$-function along the critical line