Properties

Label 2-1584-1.1-c3-0-35
Degree $2$
Conductor $1584$
Sign $1$
Analytic cond. $93.4590$
Root an. cond. $9.66742$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·5-s + 26·7-s − 11·11-s + 52·13-s − 46·17-s + 96·19-s + 27·23-s − 76·25-s − 16·29-s + 293·31-s + 182·35-s − 29·37-s + 472·41-s + 110·43-s − 224·47-s + 333·49-s − 754·53-s − 77·55-s + 825·59-s − 548·61-s + 364·65-s + 123·67-s + 1.00e3·71-s − 1.02e3·73-s − 286·77-s − 526·79-s − 158·83-s + ⋯
L(s)  = 1  + 0.626·5-s + 1.40·7-s − 0.301·11-s + 1.10·13-s − 0.656·17-s + 1.15·19-s + 0.244·23-s − 0.607·25-s − 0.102·29-s + 1.69·31-s + 0.878·35-s − 0.128·37-s + 1.79·41-s + 0.390·43-s − 0.695·47-s + 0.970·49-s − 1.95·53-s − 0.188·55-s + 1.82·59-s − 1.15·61-s + 0.694·65-s + 0.224·67-s + 1.67·71-s − 1.63·73-s − 0.423·77-s − 0.749·79-s − 0.208·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(93.4590\)
Root analytic conductor: \(9.66742\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.379481007\)
\(L(\frac12)\) \(\approx\) \(3.379481007\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + p T \)
good5 \( 1 - 7 T + p^{3} T^{2} \)
7 \( 1 - 26 T + p^{3} T^{2} \)
13 \( 1 - 4 p T + p^{3} T^{2} \)
17 \( 1 + 46 T + p^{3} T^{2} \)
19 \( 1 - 96 T + p^{3} T^{2} \)
23 \( 1 - 27 T + p^{3} T^{2} \)
29 \( 1 + 16 T + p^{3} T^{2} \)
31 \( 1 - 293 T + p^{3} T^{2} \)
37 \( 1 + 29 T + p^{3} T^{2} \)
41 \( 1 - 472 T + p^{3} T^{2} \)
43 \( 1 - 110 T + p^{3} T^{2} \)
47 \( 1 + 224 T + p^{3} T^{2} \)
53 \( 1 + 754 T + p^{3} T^{2} \)
59 \( 1 - 825 T + p^{3} T^{2} \)
61 \( 1 + 548 T + p^{3} T^{2} \)
67 \( 1 - 123 T + p^{3} T^{2} \)
71 \( 1 - 1001 T + p^{3} T^{2} \)
73 \( 1 + 1020 T + p^{3} T^{2} \)
79 \( 1 + 526 T + p^{3} T^{2} \)
83 \( 1 + 158 T + p^{3} T^{2} \)
89 \( 1 - 1217 T + p^{3} T^{2} \)
97 \( 1 + 263 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.036972369585110320218302208486, −8.176264238368301283270321901260, −7.68056424196734473240759287247, −6.52538982442185044380895069746, −5.74674643230168395855459288922, −4.95420751869720998209705587932, −4.14134783362483100766259245313, −2.86781227021253339178570339667, −1.80472589896682391374798968624, −0.961190492282931116715747112878, 0.961190492282931116715747112878, 1.80472589896682391374798968624, 2.86781227021253339178570339667, 4.14134783362483100766259245313, 4.95420751869720998209705587932, 5.74674643230168395855459288922, 6.52538982442185044380895069746, 7.68056424196734473240759287247, 8.176264238368301283270321901260, 9.036972369585110320218302208486

Graph of the $Z$-function along the critical line