| L(s)  = 1 | + (0.965 − 0.258i)2-s   + (0.707 − 0.707i)3-s       + (0.500 − 0.866i)6-s   + (0.707 + 0.707i)7-s   + (−0.707 + 0.707i)8-s   − 1.00i·9-s         + (−0.258 − 0.965i)13-s   + (0.866 + 0.500i)14-s     + (−0.5 + 0.866i)16-s   + (0.965 − 0.258i)17-s   + (−0.258 − 0.965i)18-s   + (0.866 − 0.5i)19-s     + 1.00·21-s       + 0.999i·24-s     + (−0.499 − 0.866i)26-s   + (−0.707 − 0.707i)27-s  + ⋯ | 
| L(s)  = 1 | + (0.965 − 0.258i)2-s   + (0.707 − 0.707i)3-s       + (0.500 − 0.866i)6-s   + (0.707 + 0.707i)7-s   + (−0.707 + 0.707i)8-s   − 1.00i·9-s         + (−0.258 − 0.965i)13-s   + (0.866 + 0.500i)14-s     + (−0.5 + 0.866i)16-s   + (0.965 − 0.258i)17-s   + (−0.258 − 0.965i)18-s   + (0.866 − 0.5i)19-s     + 1.00·21-s       + 0.999i·24-s     + (−0.499 − 0.866i)26-s   + (−0.707 − 0.707i)27-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 + 0.647i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 + 0.647i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(2.144694092\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(2.144694092\) | 
    
        
      | \(L(1)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 3 | \( 1 + (-0.707 + 0.707i)T \) | 
|  | 5 | \( 1 \) | 
|  | 7 | \( 1 + (-0.707 - 0.707i)T \) | 
| good | 2 | \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \) | 
|  | 11 | \( 1 + T^{2} \) | 
|  | 13 | \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \) | 
|  | 17 | \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \) | 
|  | 19 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) | 
|  | 23 | \( 1 - iT^{2} \) | 
|  | 29 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) | 
|  | 31 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) | 
|  | 37 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) | 
|  | 41 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) | 
|  | 43 | \( 1 + (0.965 + 0.258i)T + (0.866 + 0.5i)T^{2} \) | 
|  | 47 | \( 1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2} \) | 
|  | 53 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) | 
|  | 59 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) | 
|  | 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) | 
|  | 67 | \( 1 + (0.258 - 0.965i)T + (-0.866 - 0.5i)T^{2} \) | 
|  | 71 | \( 1 + 2T + T^{2} \) | 
|  | 73 | \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \) | 
|  | 79 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) | 
|  | 83 | \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \) | 
|  | 89 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) | 
|  | 97 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.274670417507325236327233620610, −8.700647397858995282517722512812, −7.893323417589974983944957441709, −7.30517919104305582803904121734, −5.97872240584779656472603646679, −5.38155020608133063839802400433, −4.53028499009629204855373191096, −3.18708264890501264989660077222, −2.88977262446882646130614433621, −1.54377635240555344170191146008, 
1.72536222333760870651217469146, 3.23924089804624685617367967777, 3.88627037559105298383878259479, 4.68094067830853605853580437579, 5.26036485602424613262808798955, 6.29589172712385127514043180874, 7.38804618673787384776763766208, 8.020520536251053597589218834887, 8.972536880883109640724116207594, 9.864101953592230753143292206540
