| L(s) = 1 | + (0.366 + 0.366i)2-s − 0.732i·4-s + (0.707 − 0.707i)7-s + (0.633 − 0.633i)8-s + 1.93i·11-s + 0.517·14-s − 0.267·16-s + (−0.707 + 0.707i)22-s + (1.36 − 1.36i)23-s + (−0.517 − 0.517i)28-s − 0.517·29-s + (−0.732 − 0.732i)32-s + (0.707 − 0.707i)37-s + (−0.707 − 0.707i)43-s + 1.41·44-s + ⋯ |
| L(s) = 1 | + (0.366 + 0.366i)2-s − 0.732i·4-s + (0.707 − 0.707i)7-s + (0.633 − 0.633i)8-s + 1.93i·11-s + 0.517·14-s − 0.267·16-s + (−0.707 + 0.707i)22-s + (1.36 − 1.36i)23-s + (−0.517 − 0.517i)28-s − 0.517·29-s + (−0.732 − 0.732i)32-s + (0.707 − 0.707i)37-s + (−0.707 − 0.707i)43-s + 1.41·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.960 + 0.279i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.960 + 0.279i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.485884790\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.485884790\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
| good | 2 | \( 1 + (-0.366 - 0.366i)T + iT^{2} \) |
| 11 | \( 1 - 1.93iT - T^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 - iT^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
| 29 | \( 1 + 0.517T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (1 - i)T - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
| 71 | \( 1 - 0.517iT - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - iT - T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.676226835133049066723231484742, −8.877054618015891054823097796902, −7.65386737811237934607768840691, −7.13647540383736666066156323550, −6.47231161385453316241618176362, −5.27227908560859830265680886104, −4.66488846935814731353260807325, −4.07683681254580985032185196946, −2.35138953418986841020647102354, −1.29118949503361770277262403942,
1.58762772048819548559872769886, 2.96577581991373207098789945165, 3.40389665926964421697743674206, 4.67073225633363492875681856977, 5.41757852189730883755636194103, 6.26364429203702270049841510121, 7.46935756190973302915501864359, 8.162702432183213383110961345965, 8.732027534142188365150973230684, 9.467749500272361641522256933885