| L(s)  = 1 | + (−1.36 − 1.36i)2-s     + 2.73i·4-s       + (0.707 − 0.707i)7-s   + (2.36 − 2.36i)8-s       − 0.517i·11-s       − 1.93·14-s     − 3.73·16-s             + (−0.707 + 0.707i)22-s   + (−0.366 + 0.366i)23-s           + (1.93 + 1.93i)28-s   + 1.93·29-s       + (2.73 + 2.73i)32-s           + (0.707 − 0.707i)37-s             + (−0.707 − 0.707i)43-s   + 1.41·44-s    + ⋯ | 
| L(s)  = 1 | + (−1.36 − 1.36i)2-s     + 2.73i·4-s       + (0.707 − 0.707i)7-s   + (2.36 − 2.36i)8-s       − 0.517i·11-s       − 1.93·14-s     − 3.73·16-s             + (−0.707 + 0.707i)22-s   + (−0.366 + 0.366i)23-s           + (1.93 + 1.93i)28-s   + 1.93·29-s       + (2.73 + 2.73i)32-s           + (0.707 − 0.707i)37-s             + (−0.707 − 0.707i)43-s   + 1.41·44-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.465 + 0.884i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.465 + 0.884i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(0.5888021875\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.5888021875\) | 
    
        
      | \(L(1)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 3 | \( 1 \) | 
|  | 5 | \( 1 \) | 
|  | 7 | \( 1 + (-0.707 + 0.707i)T \) | 
| good | 2 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) | 
|  | 11 | \( 1 + 0.517iT - T^{2} \) | 
|  | 13 | \( 1 - iT^{2} \) | 
|  | 17 | \( 1 - iT^{2} \) | 
|  | 19 | \( 1 + T^{2} \) | 
|  | 23 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) | 
|  | 29 | \( 1 - 1.93T + T^{2} \) | 
|  | 31 | \( 1 - T^{2} \) | 
|  | 37 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) | 
|  | 41 | \( 1 + T^{2} \) | 
|  | 43 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) | 
|  | 47 | \( 1 - iT^{2} \) | 
|  | 53 | \( 1 + (1 - i)T - iT^{2} \) | 
|  | 59 | \( 1 - T^{2} \) | 
|  | 61 | \( 1 - T^{2} \) | 
|  | 67 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) | 
|  | 71 | \( 1 + 1.93iT - T^{2} \) | 
|  | 73 | \( 1 - iT^{2} \) | 
|  | 79 | \( 1 - iT - T^{2} \) | 
|  | 83 | \( 1 + iT^{2} \) | 
|  | 89 | \( 1 - T^{2} \) | 
|  | 97 | \( 1 + iT^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.496002656742637337611491673342, −8.649642846639026022931520492213, −8.055054408011781176650335139948, −7.44769449073133678428575791088, −6.44154199985125908027307548908, −4.83653178894224350905498506892, −3.92670879058723171195278808026, −3.04164116748702008826977240626, −1.93768012058986991320882912297, −0.861828767446607314889184561646, 
1.29994934193556921827966284901, 2.45945762114848560825649365176, 4.56947592493747470899075214247, 5.17660578097449998253715183679, 6.16256035830108385179713263002, 6.72772627390866816784191880329, 7.68598354963965700613995410414, 8.324622837995334514119927674383, 8.759836154054357132509957237561, 9.784530900395072950390031411575
