| L(s)  = 1 | + (1 + i)2-s     + i·4-s       + (−0.707 + 0.707i)7-s         + 1.41i·11-s       − 1.41·14-s     + 16-s             + (−1.41 + 1.41i)22-s   + (−1 + i)23-s           + (−0.707 − 0.707i)28-s   + 1.41·29-s       + (1 + i)32-s           + (1.41 − 1.41i)37-s             + (−1.41 − 1.41i)43-s   − 1.41·44-s     − 2·46-s    + ⋯ | 
| L(s)  = 1 | + (1 + i)2-s     + i·4-s       + (−0.707 + 0.707i)7-s         + 1.41i·11-s       − 1.41·14-s     + 16-s             + (−1.41 + 1.41i)22-s   + (−1 + i)23-s           + (−0.707 − 0.707i)28-s   + 1.41·29-s       + (1 + i)32-s           + (1.41 − 1.41i)37-s             + (−1.41 − 1.41i)43-s   − 1.41·44-s     − 2·46-s    + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.374 - 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.374 - 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(\frac{1}{2})\) | \(\approx\) | \(1.751838313\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.751838313\) | 
    
        
      | \(L(1)\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 3 | \( 1 \) | 
|  | 5 | \( 1 \) | 
|  | 7 | \( 1 + (0.707 - 0.707i)T \) | 
| good | 2 | \( 1 + (-1 - i)T + iT^{2} \) | 
|  | 11 | \( 1 - 1.41iT - T^{2} \) | 
|  | 13 | \( 1 - iT^{2} \) | 
|  | 17 | \( 1 - iT^{2} \) | 
|  | 19 | \( 1 + T^{2} \) | 
|  | 23 | \( 1 + (1 - i)T - iT^{2} \) | 
|  | 29 | \( 1 - 1.41T + T^{2} \) | 
|  | 31 | \( 1 - T^{2} \) | 
|  | 37 | \( 1 + (-1.41 + 1.41i)T - iT^{2} \) | 
|  | 41 | \( 1 + T^{2} \) | 
|  | 43 | \( 1 + (1.41 + 1.41i)T + iT^{2} \) | 
|  | 47 | \( 1 - iT^{2} \) | 
|  | 53 | \( 1 + (1 - i)T - iT^{2} \) | 
|  | 59 | \( 1 - T^{2} \) | 
|  | 61 | \( 1 - T^{2} \) | 
|  | 67 | \( 1 - iT^{2} \) | 
|  | 71 | \( 1 + 1.41iT - T^{2} \) | 
|  | 73 | \( 1 - iT^{2} \) | 
|  | 79 | \( 1 + 2iT - T^{2} \) | 
|  | 83 | \( 1 + iT^{2} \) | 
|  | 89 | \( 1 - T^{2} \) | 
|  | 97 | \( 1 + iT^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.815058115810703438957590670150, −9.045671556612517321104457729427, −7.914334908967090917684493587885, −7.29050977855640185738331891894, −6.46141937531656666784095877689, −5.87062846748685346960231179231, −4.99473716344798591472882486957, −4.24405567623656101125730488152, −3.26212981803990160417194471414, −1.99853543848525930454647359952, 
1.09574911540786564503374128921, 2.66671426068583057859247343096, 3.28527492964716103587803528489, 4.15706526693404224822204476378, 4.92000633166331703893434148320, 6.09312313545987489851557351538, 6.56215842585024997409073439737, 7.976276606161320309392002487064, 8.466219262566417476036316629381, 9.889281528924600794794481440043
