Properties

Label 2-1575-1.1-c3-0-93
Degree $2$
Conductor $1575$
Sign $-1$
Analytic cond. $92.9280$
Root an. cond. $9.63991$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s + 4-s − 7·7-s + 21·8-s + 36·11-s + 34·13-s + 21·14-s − 71·16-s + 42·17-s − 124·19-s − 108·22-s − 102·26-s − 7·28-s − 102·29-s − 160·31-s + 45·32-s − 126·34-s − 398·37-s + 372·38-s + 318·41-s + 268·43-s + 36·44-s + 240·47-s + 49·49-s + 34·52-s − 498·53-s − 147·56-s + ⋯
L(s)  = 1  − 1.06·2-s + 1/8·4-s − 0.377·7-s + 0.928·8-s + 0.986·11-s + 0.725·13-s + 0.400·14-s − 1.10·16-s + 0.599·17-s − 1.49·19-s − 1.04·22-s − 0.769·26-s − 0.0472·28-s − 0.653·29-s − 0.926·31-s + 0.248·32-s − 0.635·34-s − 1.76·37-s + 1.58·38-s + 1.21·41-s + 0.950·43-s + 0.123·44-s + 0.744·47-s + 1/7·49-s + 0.0906·52-s − 1.29·53-s − 0.350·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(92.9280\)
Root analytic conductor: \(9.63991\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1575,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + p T \)
good2 \( 1 + 3 T + p^{3} T^{2} \)
11 \( 1 - 36 T + p^{3} T^{2} \)
13 \( 1 - 34 T + p^{3} T^{2} \)
17 \( 1 - 42 T + p^{3} T^{2} \)
19 \( 1 + 124 T + p^{3} T^{2} \)
23 \( 1 + p^{3} T^{2} \)
29 \( 1 + 102 T + p^{3} T^{2} \)
31 \( 1 + 160 T + p^{3} T^{2} \)
37 \( 1 + 398 T + p^{3} T^{2} \)
41 \( 1 - 318 T + p^{3} T^{2} \)
43 \( 1 - 268 T + p^{3} T^{2} \)
47 \( 1 - 240 T + p^{3} T^{2} \)
53 \( 1 + 498 T + p^{3} T^{2} \)
59 \( 1 - 132 T + p^{3} T^{2} \)
61 \( 1 - 398 T + p^{3} T^{2} \)
67 \( 1 + 92 T + p^{3} T^{2} \)
71 \( 1 - 720 T + p^{3} T^{2} \)
73 \( 1 - 502 T + p^{3} T^{2} \)
79 \( 1 + 1024 T + p^{3} T^{2} \)
83 \( 1 + 204 T + p^{3} T^{2} \)
89 \( 1 + 354 T + p^{3} T^{2} \)
97 \( 1 - 286 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.885246046071588761565787055540, −8.063142983598651230061085054030, −7.19472202354178503994769808828, −6.44386508541565650041771898747, −5.51579502860220668657517786773, −4.25379457590558783859526953993, −3.62191593906425701898025457332, −2.07856042190099487141750439646, −1.12703829830999989009363196981, 0, 1.12703829830999989009363196981, 2.07856042190099487141750439646, 3.62191593906425701898025457332, 4.25379457590558783859526953993, 5.51579502860220668657517786773, 6.44386508541565650041771898747, 7.19472202354178503994769808828, 8.063142983598651230061085054030, 8.885246046071588761565787055540

Graph of the $Z$-function along the critical line