L(s) = 1 | − 1.19·2-s − 6.56·4-s − 7·7-s + 17.4·8-s + 4.52·11-s + 14.5·13-s + 8.37·14-s + 31.7·16-s + 15.5·17-s − 14.8·19-s − 5.41·22-s − 166.·23-s − 17.4·26-s + 45.9·28-s − 194.·29-s + 104.·31-s − 177.·32-s − 18.6·34-s − 47.5·37-s + 17.7·38-s + 378.·41-s + 194.·43-s − 29.7·44-s + 199.·46-s + 488.·47-s + 49·49-s − 95.7·52-s + ⋯ |
L(s) = 1 | − 0.422·2-s − 0.821·4-s − 0.377·7-s + 0.770·8-s + 0.124·11-s + 0.310·13-s + 0.159·14-s + 0.495·16-s + 0.221·17-s − 0.179·19-s − 0.0524·22-s − 1.51·23-s − 0.131·26-s + 0.310·28-s − 1.24·29-s + 0.605·31-s − 0.979·32-s − 0.0938·34-s − 0.211·37-s + 0.0758·38-s + 1.44·41-s + 0.691·43-s − 0.101·44-s + 0.639·46-s + 1.51·47-s + 0.142·49-s − 0.255·52-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + 7T \) |
good | 2 | \( 1 + 1.19T + 8T^{2} \) |
| 11 | \( 1 - 4.52T + 1.33e3T^{2} \) |
| 13 | \( 1 - 14.5T + 2.19e3T^{2} \) |
| 17 | \( 1 - 15.5T + 4.91e3T^{2} \) |
| 19 | \( 1 + 14.8T + 6.85e3T^{2} \) |
| 23 | \( 1 + 166.T + 1.21e4T^{2} \) |
| 29 | \( 1 + 194.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 104.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 47.5T + 5.06e4T^{2} \) |
| 41 | \( 1 - 378.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 194.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 488.T + 1.03e5T^{2} \) |
| 53 | \( 1 - 316.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 350.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 115.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 434.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 410.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 464.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 290.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 578.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 937.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 839.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.791218242302896855792676075115, −7.939613357284127272375508495301, −7.29805054337327390389566662186, −6.10702880066989189109128303553, −5.47363517113385842461577051025, −4.25495826248723634826451929876, −3.75373105645356305031978132027, −2.35800383015989326197550826542, −1.07983027148695969248977662005, 0,
1.07983027148695969248977662005, 2.35800383015989326197550826542, 3.75373105645356305031978132027, 4.25495826248723634826451929876, 5.47363517113385842461577051025, 6.10702880066989189109128303553, 7.29805054337327390389566662186, 7.939613357284127272375508495301, 8.791218242302896855792676075115